The polynomial $x^4+x^2+1$ is not irreducible over $\Q$.

Proof.

Note that we can factor the polynomial as follows.
\begin{align*}
x^4+x^2+1&=x^4+2x^2+1-x^2=(x^2+1)^2-x^2\\
&=(x^2+x+1)(x^2-x+1).
\end{align*}

Thus the roots of the polynomial are
\[ x=\frac{\pm 1 \pm \sqrt{-3}}{2}\]
by the quadratic formula.

The field $\Q(\sqrt{-3})$ contains all the roots of $x^4+x^2+1$.
Hence the splitting field is a subfield of $\Q(\sqrt{-3})$, and it is not $\Q$ since the roots are not real numbers.

Since the polynomial $x^2+3$ is irreducible over $\Q$ by Eisenstein’s criterion, the extension degree $[\Q(\sqrt{-3}):\Q]=2$.
Thus the field $\Q(\sqrt{-3})$ must be the splitting field and its degree over $\Q$ is $2$.

$x^3-\sqrt{2}$ is Irreducible Over the Field $\Q(\sqrt{2})$
Show that the polynomial $x^3-\sqrt{2}$ is irreducible over the field $\Q(\sqrt{2})$.
Hint.
Consider the field extensions $\Q(\sqrt{2})$ and $\Q(\sqrt[6]{2})$.
Proof.
Let $\sqrt[6]{2}$ denote the positive real $6$-th root of of $2$.
Then since $x^6-2$ is […]

The Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of Unity
Prove that the polynomial $x^p-2$ for a prime number $p$ is irreducible over the field $\Q(\zeta_p)$, where $\zeta_p$ is a primitive $p$th root of unity.
Hint.
Consider the field extension $\Q(\sqrt[p]{2}, \zeta)$, where $\zeta$ is a primitive $p$-th root of […]

Galois Group of the Polynomial $x^2-2$
Let $\Q$ be the field of rational numbers.
(a) Is the polynomial $f(x)=x^2-2$ separable over $\Q$?
(b) Find the Galois group of $f(x)$ over $\Q$.
Solution.
(a) The polynomial $f(x)=x^2-2$ is separable over $\Q$
The roots of the polynomial $f(x)$ are $\pm […]

Galois Extension $\Q(\sqrt{2+\sqrt{2}})$ of Degree 4 with Cyclic Group
Show that $\Q(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, that is, it is a Galois extension of degree $4$ with cyclic Galois group.
Proof.
Put $\alpha=\sqrt{2+\sqrt{2}}$. Then we have $\alpha^2=2+\sqrt{2}$. Taking square of $\alpha^2-2=\sqrt{2}$, we obtain […]

Galois Group of the Polynomial $x^p-2$.
Let $p \in \Z$ be a prime number.
Then describe the elements of the Galois group of the polynomial $x^p-2$.
Solution.
The roots of the polynomial $x^p-2$ are
\[ \sqrt[p]{2}\zeta^k, k=0,1, \dots, p-1\]
where $\sqrt[p]{2}$ is a real $p$-th root of $2$ and $\zeta$ […]

Application of Field Extension to Linear Combination
Consider the cubic polynomial $f(x)=x^3-x+1$ in $\Q[x]$.
Let $\alpha$ be any real root of $f(x)$.
Then prove that $\sqrt{2}$ can not be written as a linear combination of $1, \alpha, \alpha^2$ with coefficients in $\Q$.
Proof.
We first prove that the polynomial […]

Irreducible Polynomial $x^3+9x+6$ and Inverse Element in Field Extension
Prove that the polynomial
\[f(x)=x^3+9x+6\]
is irreducible over the field of rational numbers $\Q$.
Let $\theta$ be a root of $f(x)$.
Then find the inverse of $1+\theta$ in the field $\Q(\theta)$.
Proof.
Note that $f(x)$ is a monic polynomial and the prime […]

Cubic Polynomial $x^3-2$ is Irreducible Over the Field $\Q(i)$
Prove that the cubic polynomial $x^3-2$ is irreducible over the field $\Q(i)$.
Proof.
Note that the polynomial $x^3-2$ is irreducible over $\Q$ by Eisenstein's criterion (with prime $p=2$).
This implies that if $\alpha$ is any root of $x^3-2$, then the […]