Determine the Splitting Field of the Polynomial $x^4+x^2+1$ over $\Q$

Field theory problems and solution in abstract algebra

Problem 92

Determine the splitting field and its degree over $\Q$ of the polynomial
\[x^4+x^2+1.\] LoadingAdd to solve later

Contents

Hint.

The polynomial $x^4+x^2+1$ is not irreducible over $\Q$.

Proof.

Note that we can factor the polynomial as follows.
\begin{align*}
x^4+x^2+1&=x^4+2x^2+1-x^2=(x^2+1)^2-x^2\\
&=(x^2+x+1)(x^2-x+1).
\end{align*}

Thus the roots of the polynomial are
\[ x=\frac{\pm 1 \pm \sqrt{-3}}{2}\] by the quadratic formula.

The field $\Q(\sqrt{-3})$ contains all the roots of $x^4+x^2+1$.
Hence the splitting field is a subfield of $\Q(\sqrt{-3})$, and it is not $\Q$ since the roots are not real numbers.

Since the polynomial $x^2+3$ is irreducible over $\Q$ by Eisenstein’s criterion, the extension degree $[\Q(\sqrt{-3}):\Q]=2$.
Thus the field $\Q(\sqrt{-3})$ must be the splitting field and its degree over $\Q$ is $2$.


LoadingAdd to solve later

More from my site

  • $x^3-\sqrt{2}$ is Irreducible Over the Field $\Q(\sqrt{2})$$x^3-\sqrt{2}$ is Irreducible Over the Field $\Q(\sqrt{2})$ Show that the polynomial $x^3-\sqrt{2}$ is irreducible over the field $\Q(\sqrt{2})$.   Hint. Consider the field extensions $\Q(\sqrt{2})$ and $\Q(\sqrt[6]{2})$. Proof. Let $\sqrt[6]{2}$ denote the positive real $6$-th root of of $2$. Then since $x^6-2$ is […]
  • The Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of UnityThe Polynomial $x^p-2$ is Irreducible Over the Cyclotomic Field of $p$-th Root of Unity Prove that the polynomial $x^p-2$ for a prime number $p$ is irreducible over the field $\Q(\zeta_p)$, where $\zeta_p$ is a primitive $p$th root of unity.   Hint. Consider the field extension $\Q(\sqrt[p]{2}, \zeta)$, where $\zeta$ is a primitive $p$-th root of […]
  • Galois Group of the Polynomial $x^2-2$Galois Group of the Polynomial $x^2-2$ Let $\Q$ be the field of rational numbers. (a) Is the polynomial $f(x)=x^2-2$ separable over $\Q$? (b) Find the Galois group of $f(x)$ over $\Q$.   Solution. (a) The polynomial $f(x)=x^2-2$ is separable over $\Q$ The roots of the polynomial $f(x)$ are $\pm […]
  • Galois Extension $\Q(\sqrt{2+\sqrt{2}})$ of Degree 4 with Cyclic GroupGalois Extension $\Q(\sqrt{2+\sqrt{2}})$ of Degree 4 with Cyclic Group Show that $\Q(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, that is, it is a Galois extension of degree $4$ with cyclic Galois group.   Proof. Put $\alpha=\sqrt{2+\sqrt{2}}$. Then we have $\alpha^2=2+\sqrt{2}$. Taking square of $\alpha^2-2=\sqrt{2}$, we obtain […]
  • Galois Group of the Polynomial  $x^p-2$.Galois Group of the Polynomial $x^p-2$. Let $p \in \Z$ be a prime number. Then describe the elements of the Galois group of the polynomial $x^p-2$.   Solution. The roots of the polynomial $x^p-2$ are \[ \sqrt[p]{2}\zeta^k, k=0,1, \dots, p-1\] where $\sqrt[p]{2}$ is a real $p$-th root of $2$ and $\zeta$ […]
  • Application of Field Extension to Linear CombinationApplication of Field Extension to Linear Combination Consider the cubic polynomial $f(x)=x^3-x+1$ in $\Q[x]$. Let $\alpha$ be any real root of $f(x)$. Then prove that $\sqrt{2}$ can not be written as a linear combination of $1, \alpha, \alpha^2$ with coefficients in $\Q$.   Proof. We first prove that the polynomial […]
  • Irreducible Polynomial $x^3+9x+6$ and Inverse Element in Field ExtensionIrreducible Polynomial $x^3+9x+6$ and Inverse Element in Field Extension Prove that the polynomial \[f(x)=x^3+9x+6\] is irreducible over the field of rational numbers $\Q$. Let $\theta$ be a root of $f(x)$. Then find the inverse of $1+\theta$ in the field $\Q(\theta)$.   Proof. Note that $f(x)$ is a monic polynomial and the prime […]
  • Cubic Polynomial $x^3-2$ is Irreducible Over the Field $\Q(i)$Cubic Polynomial $x^3-2$ is Irreducible Over the Field $\Q(i)$ Prove that the cubic polynomial $x^3-2$ is irreducible over the field $\Q(i)$.   Proof. Note that the polynomial $x^3-2$ is irreducible over $\Q$ by Eisenstein's criterion (with prime $p=2$). This implies that if $\alpha$ is any root of $x^3-2$, then the […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Field Theory
Problems and solutions in Linear Algebra
In a Field of Positive Characteristic, $A^p=I$ Does Not Imply that $A$ is Diagonalizable.

Show that the matrix $A=\begin{bmatrix} 1 & \alpha\\ 0& 1 \end{bmatrix}$, where $\alpha$ is an element of a field $F$...

Close