# Nilpotent Matrices and Non-Singularity of Such Matrices

## Problem 146

Let $A$ be an $n \times n$ nilpotent matrix, that is, $A^m=O$ for some positive integer $m$, where $O$ is the $n \times n$ zero matrix.

Prove that $A$ is a singular matrix and also prove that $I-A, I+A$ are both nonsingular matrices, where $I$ is the $n\times n$ identity matrix.

## Hint.

We give two proofs. The first one uses only some properties of the determinant of a matrix.
The second one uses the theory of eigenvalues.

We summarize several facts we will use below.

In proof 1.

• A matrix is nonsingular if and only if it is invertible.
• A matrix is nonsingular if and only if its determinant is nonzero.
• For two square matrices $A, B$, we have
$\det(AB)=\det(A)\det(B).$

In proof 2.

• Eigenvalues of $A$ are all scalars $\lambda$ such that the matrix $A-\lambda I$ is nonsingular.

## Proof 1.

We use the fact that a matrix is nonsingular if and only if its determinant is nonzero.
Since the determinant is multiplicative, we have
\begin{align*}
0&=\det(O)=\det(A^m)=\det(A)^m.
\end{align*}
This implies that $\det(A)=0$, and hence the matrix $A$ is singular.

Next, we show that the matrix $I-A$ is nonsingular. Note that we have
$I=I-A^m=(I-A)(I+A+A^2+\cdots+A^{m-1}).$ This implies that the matrix $I+A+A^2+\cdots+A^{m-1}$ is the inverse matrix of $I-A$.
Thus the matrix $I-A$ is invertible, and hence it is nonsingular.

Next, we show that the matrix $I+A$ is nonsingular.
Note that we have
$I-(-A)^m=(I+A)(I-A+A^2-\cdots +(-1)^{m-1}A^{m-1}).$ Since $(-A)^m=(-1)^mA^m=(-1)^mO=O$, we obtain
$I=(I+A)(I-A+A^2-\cdots +(-1)^{m-1}A^{m-1})$ and this implies that $I+A$ is invertible matrix with the inverse matrix
$(I+A)^{-1}=I-A+A^2-\cdots +(-1)^{m-1}A^{m-1}.$ Therefore, the matrix $I+A$ is nonsingular.

## Proof 2.

In the second proof, we will use an eigenvalue technique.

Let $\lambda$ be an eigenvalue of the matrix $A$ and let $\mathbf{x}$ be the corresponding eigenvector. Namely, we have
$A\mathbf{x}=\lambda \mathbf{x}.$ Then we have
\begin{align*}
\mathbf{0}&=O\mathbf{x}=A^m\mathbf{x}\\
&=A^{m-1}A\mathbf{x}=A^{m-1}(\lambda \mathbf{x})=\cdots=\lambda^m\mathbf{x}.
\end{align*}
It follows that $\lambda=0$. Thus the only eigenvalue of $A$ is zero.

Recall that eigenvalues $\lambda$ are all scalars such that $A-\lambda I$ is a singular matrix.
Since $\lambda=0$ is an eigenvalue of $A$, the matrix $A=A-0I$ is singular.

Since $1$ is not an eigenvalue, we see that $A-I$ is nonsingular, and hence $I-A=-(A-I)$ is also nonsingular.

Similarly, since $-1$ is not an eigenvalue, we observe that $I+A=A+I$ is nonsingular.

## Related Question.

A natural source of nilpotent matrices is the differentiation linear transformation of vector space of polynomials.

Check out the post “Differentiating Linear Transformation is Nilpotent” for problems and solutions about the nilpotency of the differentiation linear transformation.

## Related Question.

Here is another problem about a nilpotent matrix.

Problem.
Suppose that $A$ is an $n\times n$ nilpotent matrix and $B$ is an $n\times n$ invertible matrix.
Is the matrix $B-A$ invertible? If so, give a proof. Otherwise, give a counterexample.

See the post ↴
Is the Sum of a Nilpotent Matrix and an Invertible Matrix Invertible?

### More from my site

• If $A$ is a Skew-Symmetric Matrix, then $I+A$ is Nonsingular and $(I-A)(I+A)^{-1}$ is Orthogonal Let $A$ be an $n\times n$ real skew-symmetric matrix. (a) Prove that the matrices $I-A$ and $I+A$ are nonsingular. (b) Prove that $B=(I-A)(I+A)^{-1}$ is an orthogonal matrix.   Proof. (a) Prove that the matrices $I-A$ and $I+A$ are nonsingular. The […]
• A Matrix is Invertible If and Only If It is Nonsingular In this problem, we will show that the concept of non-singularity of a matrix is equivalent to the concept of invertibility. That is, we will prove that: A matrix $A$ is nonsingular if and only if $A$ is invertible. (a) Show that if $A$ is invertible, then $A$ is […]
• Find All Values of $x$ so that a Matrix is Singular Let $A=\begin{bmatrix} 1 & -x & 0 & 0 \\ 0 &1 & -x & 0 \\ 0 & 0 & 1 & -x \\ 0 & 1 & 0 & -1 \end{bmatrix}$ be a $4\times 4$ matrix. Find all values of $x$ so that the matrix $A$ is singular.   Hint. Use the fact that a matrix is singular if and only […]
• True of False Problems on Determinants and Invertible Matrices Determine whether each of the following statements is True or False. (a) If $A$ and $B$ are $n \times n$ matrices, and $P$ is an invertible $n \times n$ matrix such that $A=PBP^{-1}$, then $\det(A)=\det(B)$. (b) If the characteristic polynomial of an $n \times n$ matrix $A$ […]
• Compute Determinant of a Matrix Using Linearly Independent Vectors Let $A$ be a $3 \times 3$ matrix. Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have $A\mathbf{x}=\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, A\mathbf{y}=\begin{bmatrix} 0 \\ 1 \\ 0 […] • If M, P are Nonsingular, then Exists a Matrix N such that MN=P Suppose that M, P are two n \times n non-singular matrix. Prove that there is a matrix N such that MN = P. Proof. As non-singularity and invertibility are equivalent, we know that M has the inverse matrix M^{-1}. Let us think backwards. Suppose that […] • Find Values of h so that the Given Vectors are Linearly Independent Find the value(s) of h for which the following set of vectors \[\left \{ \mathbf{v}_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} h \\ 1 \\ -h \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 1 \\ 2h \\ 3h+1 […] • Maximize the Dimension of the Null Space of A-aI Let \[ A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.$ Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix. Your score of this problem is equal to that […]

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

##### Subspaces of Symmetric, Skew-Symmetric Matrices

Let $V$ be the vector space over $\R$ consisting of all $n\times n$ real matrices for some fixed integer $n$....

Close