Prove that $(A + B) \mathbf{v} = A\mathbf{v} + B\mathbf{v}$ Using the Matrix Components

Linear Algebra Problems and Solutions

Problem 635

Let $A$ and $B$ be $n \times n$ matrices, and $\mathbf{v}$ an $n \times 1$ column vector.

Use the matrix components to prove that $(A + B) \mathbf{v} = A\mathbf{v} + B\mathbf{v}$.

 
LoadingAdd to solve later

Sponsored Links

Solution.

We will use the matrix components $A = (a_{i j})_{1 \leq i, j \leq n}$, $B = (b_{i j})_{1 \leq i , j \leq n }$, and $\mathbf{v} = (v_i)_{1 \leq i \leq n}$.

Then
\begin{align*}
(A + B) \mathbf{v} = \begin{bmatrix} \sum_{j=1}^n (a_{1 j} + b_{1 j} ) v_j \\[3pt] \sum_{j=1}^n (a_{2 j} + b_{2 j} ) v_j \\[3pt]\sum_{j=1}^n (a_{3 j} + b_{3 j} ) v_j \\ \vdots \\
\sum_{j=1}^n (a_{n j} + b_{n j} ) v_j \end{bmatrix}.
\end{align*}


On the other hand,
\[A\mathbf{v} + B\mathbf{v} = \begin{bmatrix} \sum_{j=1}^n a_{1 j} v_j \\[3pt] \sum_{j=1}^n a_{2 j} v_j \\[3pt] \sum_{j=1}^n a_{3 j} v_j \\ \vdots \\ \sum_{j=1}^n a_{n j} v_j \end{bmatrix} + \begin{bmatrix} \sum_{j=1}^n b_{1 j} v_j \\[3pt] \sum_{j=1}^n b_{2 j} v_j \\[3pt] \sum_{j=1}^n b_{3 j} v_j \\
\vdots \\ \sum_{j=1}^n b_{n j} v_j \end{bmatrix} = \begin{bmatrix} \sum_{j=1}^n (a_{1 j} + b_{1 j} ) v_j \\[3pt] \sum_{j=1}^n (a_{2 j} + b_{2 j} ) v_j \\[3pt] \sum_{j=1}^n (a_{3 j} + b_{3 j} ) v_j \\ \vdots \\ \sum_{j=1}^n (a_{n j} + b_{n j} ) v_j \end{bmatrix}.\]

We can see that they are the same.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Does the Trace Commute with Matrix Multiplication? Is $\tr (A B) = \tr (A) \tr (B) $?

Let $A$ and $B$ be $n \times n$ matrices. Is it always true that $\tr (A B) = \tr (A)...

Close