Solve the System of Linear Equations Using the Inverse Matrix of the Coefficient Matrix

Linear algebra problems and solutions

Problem 442

Consider the following system of linear equations
\begin{align*}
2x+3y+z&=-1\\
3x+3y+z&=1\\
2x+4y+z&=-2.
\end{align*}

(a) Find the coefficient matrix $A$ for this system.

(b) Find the inverse matrix of the coefficient matrix found in (a)

(c) Solve the system using the inverse matrix $A^{-1}$.

 
LoadingAdd to solve later

Solution.

(a) Find the coefficient matrix $A$ for this system.

The system can be written as
\[A\mathbf{x}=\mathbf{b},\] where
\[A=\begin{bmatrix}
2 & 3 & 1 \\
3 &3 &1 \\
2 & 4 & 1
\end{bmatrix}\] is the coefficient matrix of the system and
\[\mathbf{x}=\begin{bmatrix}
x \\
y \\
z
\end{bmatrix} \text{ and } \mathbf{b}=\begin{bmatrix}
-1 \\
1 \\
-2
\end{bmatrix}.\]

 

(b) Find the inverse matrix of the coefficient matrix

We apply the elementary row operations to the augmented matrix $[A\mid I]$, where $I$ is the $3\times 3$ identity matrix.
\begin{align*}
&[A\mid I]= \left[\begin{array}{rrr|rrr}
2 & 3 & 1 & 1 &0 & 0 \\
3 & 3 & 1 & 0 & 1 & 0 \\
2 & 4 & 1 & 0 & 0 & 1 \\
\end{array} \right] \xrightarrow{\substack{R_2-R_1\\R_3-R_1}}
\left[\begin{array}{rrr|rrr}
2 & 3 & 1 & 1 &0 & 0 \\
1 & 0 & 0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 \\
\end{array} \right]\\[6pt] &\xrightarrow[\text{then } R_2 \leftrightarrow R_3]{R_1\leftrightarrow R_2}
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 \\
2 & 3 & 1 & 1 &0 & 0
\end{array} \right] \xrightarrow{R_3-2R_1}
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 3 & 1 & 3 & -2 & 0
\end{array} \right]\\[6pt] &\xrightarrow{R_3-3R_2}
\left[\begin{array}{rrr|rrr}
1 & 0 & 0 & -1 & 1 & 0 \\
0 & 1 & 0 & -1 & 0 & 1 \\
0 & 0 & 1 & 6 & -2 & -3
\end{array} \right].
\end{align*}

Now the left $3\times 3$ part has become the identity matrix.
So the matrix $A$ is invertible and the inverse is given by the right $3\times 3$ part.
Hence we obtain
\[A^{-1}=\begin{bmatrix}
-1 & 1 & 0 \\
-1 &0 &1 \\
6 & -2 & -3
\end{bmatrix}.\]

 

(c) Solve the system using the inverse matrix $A^{-1}$.

As noted in (a), the system can be written using matrices as
\[A\mathbf{x}=\mathbf{b}.\] Multiplying by the inverse $A^{-1}$ on the left, we have
\begin{align*}
A^{-1}A\mathbf{x}=A^{-1}\mathbf{b}\\
I\mathbf{x}=A^{-1}\mathbf{b}\\
\mathbf{x}=A^{-1}\mathbf{b}.
\end{align*}
Therefore the solution $\mathbf{x}$ of the system is given by
\begin{align*}
\mathbf{x}&=A^{-1}\mathbf{b}\\
&=\begin{bmatrix}
-1 & 1 & 0 \\
-1 &0 &1 \\
6 & -2 & -3
\end{bmatrix}\begin{bmatrix}
-1 \\
1 \\
-2
\end{bmatrix}\\[6pt] &=\begin{bmatrix}
2 \\
-1 \\
-2
\end{bmatrix}.
\end{align*}
Thus, the solution of the system is
\[x=2, y=-1, z=-2.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and solutions in Linear Algebra
The Rank of the Sum of Two Matrices

Let $A$ and $B$ be $m\times n$ matrices. Prove that \[\rk(A+B) \leq \rk(A)+\rk(B).\]

Close