Find a Basis of the Subspace of All Vectors that are Perpendicular to the Columns of the Matrix

Math exam problems and solutions at Harvard University

Problem 40

Find a basis for the subspace $W$ of all vectors in $\R^4$ which are perpendicular to the columns of the matrix
\[A=\begin{bmatrix}
11 & 12 & 13 & 14 \\
21 &22 & 23 & 24 \\
31 & 32 & 33 & 34 \\
41 & 42 & 43 & 44
\end{bmatrix}.\]

(Harvard University Exam)

LoadingAdd to solve later

Sponsored Links


Hint.

  1. Show that $W=\calN(A^{\trans})$.
  2. Find a basis of $\calN(A^{\trans})$ by reducing the matrix $A^{\trans}$.

Solution.

Let us write $A=[A_1 \, A_2 \, A_3 \, A_4]$, where $A_i$ is the $i$-th column vector of $A$ for $i=1,2,3,4$.
First we claim that a vector $\mathbf{x}\in \R^4$ is perpendicular to all column vectors $A_i$ if and only if $\mathbf{x} \in \calN(A^{\trans})$.
To see this, we compute
\begin{align*}
A^{\trans} \mathbf{x} =\begin{bmatrix}
A_1^{\trans} \\
A_2^{\trans} \\
A_3^{\trans} \\
A_4^{\trans}
\end{bmatrix}\mathbf{x}
=\begin{bmatrix}
A_1^{\trans}\mathbf{x} \\
A_2^{\trans} \mathbf{x}\\
A_3^{\trans} \mathbf{x}\\
A_4^{\trans} \mathbf{x}
\end{bmatrix}.
\end{align*}
From this equality the claim follows immediately.

So we proved that $\calN(A^{\trans}) =W$. From this, we see that $W$ is actually a subspace of $\R^4$.


Thus, we need to find a basis for the null space of the transpose $A^{\trans}$.

We apply elementary row operations to $A^{\trans}$ and obtain a reduced row echelon form
\[A^{\trans} \to \begin{bmatrix}
1 & 0 & -1 & -2 \\
0 &1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}.\] The last two columns correspond to two free variables. Let $s$ and $t$ be free variable.
Then $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix} \in \calN(A^{\trans})$ if and only if $\mathbf{x}$ satisfies
\begin{align*}
x_1 &=s+2t \\
x_2 &=-2s-3t\\
x_3 &=s\\
x_4 &=t,
\end{align*}
equivalently
\begin{align*}
\mathbf{x}=s\begin{bmatrix}
1 \\
-2 \\
1 \\
0
\end{bmatrix}
+t\begin{bmatrix}
2 \\
-3 \\
0 \\
1
\end{bmatrix}.
\end{align*}
Therefore a basis of $W=\calN(A^{\trans})$ is
\[ \begin{bmatrix}
1 \\
-2 \\
1 \\
0
\end{bmatrix} \text{ and } \begin{bmatrix}
2 \\
-3 \\
0 \\
1
\end{bmatrix}.\]


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Stanford University Linear Algebra Exam Problems and Solutions
Given the Characteristic Polynomial of a Diagonalizable Matrix, Find the Size of the Matrix, Dimension of Eigenspace

Suppose that $A$ is a diagonalizable matrix with characteristic polynomial \[f_A(\lambda)=\lambda^2(\lambda-3)(\lambda+2)^3(\lambda-4)^3.\] (a) Find the size of the matrix $A$. (b) Find the...

Close