# The Index of the Center of a Non-Abelian $p$-Group is Divisible by $p^2$

## Problem 124

Let $p$ be a prime number.
Let $G$ be a non-abelian $p$-group.
Show that the index of the center of $G$ is divisible by $p^2$.

## Proof.

Suppose the order of the group $G$ is $p^a$, for some $a \in \Z$.
Let $Z(G)$ be the center of $G$. Since $Z(G)$ is a subgroup of $G$, the order of the center is also a power of $p$, that is, $|Z(G)|=p^b$, for some $b \in \Z$.
Then we have the index $[G: Z(G)]=p^{a-b}$.

If $a-b=0$, then we have $G=Z(G)$ and $G$ is an abelian group. This contradicts with the assumption that $G$ is non-abelian. So $a-b \neq 0$.

If $a-b=1$, then the order of the quotient $|G/Z(G)|=[G:Z(G)]=p$ is a prime, thus $G/Z(G)$ is a cyclic group.
Recall that if the quotient by the center is cyclic, then the group is abelian.
Thus the group $G$ is abelian, which again a contradiction.

Therefore, we must have $a-b \geq 2$, hence $p^2$ divides the index $[G: Z(G)]=p^{a-b}$.
This concludes the proof.

• Subgroup Containing All $p$-Sylow Subgroups of a Group Suppose that $G$ is a finite group of order $p^an$, where $p$ is a prime number and $p$ does not divide $n$. Let $N$ be a normal subgroup of $G$ such that the index $|G: N|$ is relatively prime to $p$. Then show that $N$ contains all $p$-Sylow subgroups of […]
• Equivalent Definitions of Characteristic Subgroups. Center is Characteristic. Let $H$ be a subgroup of a group $G$. We call $H$ characteristic in $G$ if for any automorphism $\sigma\in \Aut(G)$ of $G$, we have $\sigma(H)=H$. (a) Prove that if $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$, then $H$ is characteristic in $G$. (b) Prove that the center […]