Let $p$ be a prime number.
Let $G$ be a non-abelian $p$-group.
Show that the index of the center of $G$ is divisible by $p^2$. Add to solve later

Proof.

Suppose the order of the group $G$ is $p^a$, for some $a \in \Z$.
Let $Z(G)$ be the center of $G$. Since $Z(G)$ is a subgroup of $G$, the order of the center is also a power of $p$, that is, $|Z(G)|=p^b$, for some $b \in \Z$.
Then we have the index $[G: Z(G)]=p^{a-b}$.

If $a-b=0$, then we have $G=Z(G)$ and $G$ is an abelian group. This contradicts with the assumption that $G$ is non-abelian. So $a-b \neq 0$.

Subgroup Containing All $p$-Sylow Subgroups of a Group
Suppose that $G$ is a finite group of order $p^an$, where $p$ is a prime number and $p$ does not divide $n$.
Let $N$ be a normal subgroup of $G$ such that the index $|G: N|$ is relatively prime to $p$.
Then show that $N$ contains all $p$-Sylow subgroups of […]

Fundamental Theorem of Finitely Generated Abelian Groups and its application
In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem.
Problem.
Let $G$ be a finite abelian group of order $n$.
If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]

Equivalent Definitions of Characteristic Subgroups. Center is Characteristic.
Let $H$ be a subgroup of a group $G$. We call $H$ characteristic in $G$ if for any automorphism $\sigma\in \Aut(G)$ of $G$, we have $\sigma(H)=H$.
(a) Prove that if $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$, then $H$ is characteristic in $G$.
(b) Prove that the center […]

The Center of a p-Group is Not Trivial
Let $G$ be a group of order $|G|=p^n$ for some $n \in \N$.
(Such a group is called a $p$-group.)
Show that the center $Z(G)$ of the group $G$ is not trivial.
Hint.
Use the class equation.
Proof.
If $G=Z(G)$, then the statement is true. So suppose that $G\neq […]

Group Homomorphism, Conjugate, Center, and Abelian group
Let $G$ be a group. We fix an element $x$ of $G$ and define a map
\[ \Psi_x: G\to G\]
by mapping $g\in G$ to $xgx^{-1} \in G$.
Then prove the followings.
(a) The map $\Psi_x$ is a group homomorphism.
(b) The map $\Psi_x=\id$ if and only if $x\in Z(G)$, where $Z(G)$ is the […]

Normal Subgroup Whose Order is Relatively Prime to Its Index
Let $G$ be a finite group and let $N$ be a normal subgroup of $G$.
Suppose that the order $n$ of $N$ is relatively prime to the index $|G:N|=m$.
(a) Prove that $N=\{a\in G \mid a^n=e\}$.
(b) Prove that $N=\{b^m \mid b\in G\}$.
Proof.
Note that as $n$ and […]

Group of Order $pq$ is Either Abelian or the Center is Trivial
Let $G$ be a group of order $|G|=pq$, where $p$ and $q$ are (not necessarily distinct) prime numbers.
Then show that $G$ is either abelian group or the center $Z(G)=1$.
Hint.
Use the result of the problem "If the Quotient by the Center is Cyclic, then the Group is […]

The Order of $ab$ and $ba$ in a Group are the Same
Let $G$ be a finite group. Let $a, b$ be elements of $G$.
Prove that the order of $ab$ is equal to the order of $ba$.
(Of course do not assume that $G$ is an abelian group.)
Proof.
Let $n$ and $m$ be the order of $ab$ and $ba$, respectively. That is,
\[(ab)^n=e, […]