# Sum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All Zero ## Problem 139

Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if
$A_1^2+A_2^2+\cdots+A_m^2=\calO,$ where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$. Add to solve later

Contents

## Hint.

Recall that a complex matrix $A$ is Hermitian if the conjugate transpose of $A$ is $A$ itself.
Namely, $A$ is Hermitian if
$\bar{A}^{\trans}=A.$

We also use the length of a vector in the proof below.
Let $\mathbf{v}$ be $n$-dimensional complex vector. Then the length of $\mathbf{v}$ is defined to be
$\|\mathbf{v}\|=\sqrt{\bar{\mathbf{v}}^{\trans}\mathbf{v}}.$ The length of a complex vector $\mathbf{v}$ is a non-negative real number.

The length is also called norm or magnitude.

## Proof.

Let $\mathbf{x}$ be an $n$-dimensional vector, that is, $\mathbf{x}\in \R^n$.

Then for each $i$, we have
$\bar{\mathbf{x}}^{\trans}A_i^2\mathbf{x}=\bar{\mathbf{x}}^{\trans}\bar{A}_i^{\trans}A_i\mathbf{x}=(\overline{A_i\mathbf{x}})^{\trans}(A_i\mathbf{x})=\|A_i\mathbf{x}\|^2\geq 0.$ Here, the first equality follows from the definition of a Hermitian matrix.

Now we compute
\begin{align*}
0&=\bar{\mathbf{x}}^{\trans}\calO \mathbf{x}=\bar{\mathbf{x}}^{\trans}(A_1^2+A_2^2+\cdots+A_m^2) \mathbf{x}\\
&=\bar{\mathbf{x}}^{\trans}A_1^2\mathbf{x}+\bar{\mathbf{x}}^{\trans}A_2^2\mathbf{x}+\cdots+\bar{\mathbf{x}}^{\trans}A_m^2 \mathbf{x}\\
&=\|A_1\mathbf{x}\|^2+\|A_2\mathbf{x}\|^2+\cdots +\|A_m\mathbf{x}\|^2.
\end{align*}

Since each length $\|A_i\mathbf{x}\|$ is a non-negative real number, this implies that we have $A_i\mathbf{x}=\mathbf{0}$ for all $\mathbf{x \in \R^n}$. Hence we must have $A_i=\calO$ for each $i=1,2,\dots, m$. Add to solve later

### More from my site

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

###### More in Linear Algebra ##### How to Find the Determinant of the $3\times 3$ Matrix

Find the determinant of the matix \[A=\begin{bmatrix} 100 & 101 & 102 \\ 101 &102 &103 \\ 102 & 103...

Close