Sum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All Zero

Problem 139

Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if
$A_1^2+A_2^2+\cdots+A_m^2=\calO,$ where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$.

Contents

Hint.

Recall that a complex matrix $A$ is Hermitian if the conjugate transpose of $A$ is $A$ itself.
Namely, $A$ is Hermitian if
$\bar{A}^{\trans}=A.$

We also use the length of a vector in the proof below.
Let $\mathbf{v}$ be $n$-dimensional complex vector. Then the length of $\mathbf{v}$ is defined to be
$\|\mathbf{v}\|=\sqrt{\bar{\mathbf{v}}^{\trans}\mathbf{v}}.$ The length of a complex vector $\mathbf{v}$ is a non-negative real number.

The length is also called norm or magnitude.

Proof.

Let $\mathbf{x}$ be an $n$-dimensional vector, that is, $\mathbf{x}\in \R^n$.

Then for each $i$, we have
$\bar{\mathbf{x}}^{\trans}A_i^2\mathbf{x}=\bar{\mathbf{x}}^{\trans}\bar{A}_i^{\trans}A_i\mathbf{x}=(\overline{A_i\mathbf{x}})^{\trans}(A_i\mathbf{x})=\|A_i\mathbf{x}\|^2\geq 0.$ Here, the first equality follows from the definition of a Hermitian matrix.

Now we compute
\begin{align*}
0&=\bar{\mathbf{x}}^{\trans}\calO \mathbf{x}=\bar{\mathbf{x}}^{\trans}(A_1^2+A_2^2+\cdots+A_m^2) \mathbf{x}\\
&=\bar{\mathbf{x}}^{\trans}A_1^2\mathbf{x}+\bar{\mathbf{x}}^{\trans}A_2^2\mathbf{x}+\cdots+\bar{\mathbf{x}}^{\trans}A_m^2 \mathbf{x}\\
&=\|A_1\mathbf{x}\|^2+\|A_2\mathbf{x}\|^2+\cdots +\|A_m\mathbf{x}\|^2.
\end{align*}

Since each length $\|A_i\mathbf{x}\|$ is a non-negative real number, this implies that we have $A_i\mathbf{x}=\mathbf{0}$ for all $\mathbf{x \in \R^n}$. Hence we must have $A_i=\calO$ for each $i=1,2,\dots, m$.

More from my site

• Eigenvalues of a Hermitian Matrix are Real Numbers Show that eigenvalues of a Hermitian matrix $A$ are real numbers. (The Ohio State University Linear Algebra Exam Problem)   We give two proofs. These two proofs are essentially the same. The second proof is a bit simpler and concise compared to the first one. […]
• Inner Products, Lengths, and Distances of 3-Dimensional Real Vectors For this problem, use the real vectors $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix} , \mathbf{v}_2 = \begin{bmatrix} 0 \\ 2 \\ -3 \end{bmatrix} , \mathbf{v}_3 = \begin{bmatrix} 2 \\ 2 \\ 3 \end{bmatrix} .$ Suppose that $\mathbf{v}_4$ is another vector which is […]
• Inner Product, Norm, and Orthogonal Vectors Let $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are vectors in $\R^n$. Suppose that vectors $\mathbf{u}_1$, $\mathbf{u}_2$ are orthogonal and the norm of $\mathbf{u}_2$ is $4$ and $\mathbf{u}_2^{\trans}\mathbf{u}_3=7$. Find the value of the real number $a$ in […]
• Find the Distance Between Two Vectors if the Lengths and the Dot Product are Given Let $\mathbf{a}$ and $\mathbf{b}$ be vectors in $\R^n$ such that their length are $\|\mathbf{a}\|=\|\mathbf{b}\|=1$ and the inner product $\mathbf{a}\cdot \mathbf{b}=\mathbf{a}^{\trans}\mathbf{b}=-\frac{1}{2}.$ Then determine the length $\|\mathbf{a}-\mathbf{b}\|$. (Note […]
• Find the Inverse Matrix of a Matrix With Fractions Find the inverse matrix of the matrix $A=\begin{bmatrix} \frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt] \frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt] -\frac{3}{7} & \frac{6}{7} & -\frac{2}{7} \end{bmatrix}.$   Hint. You may use the augmented matrix […]
• 7 Problems on Skew-Symmetric Matrices Let $A$ and $B$ be $n\times n$ skew-symmetric matrices. Namely $A^{\trans}=-A$ and $B^{\trans}=-B$. (a) Prove that $A+B$ is skew-symmetric. (b) Prove that $cA$ is skew-symmetric for any scalar $c$. (c) Let $P$ be an $m\times n$ matrix. Prove that $P^{\trans}AP$ is […]
• Prove that the Length $\|A^n\mathbf{v}\|$ is As Small As We Like. Consider the matrix $A=\begin{bmatrix} 3/2 & 2\\ -1& -3/2 \end{bmatrix} \in M_{2\times 2}(\R).$ (a) Find the eigenvalues and corresponding eigenvectors of $A$. (b) Show that for $\mathbf{v}=\begin{bmatrix} 1 \\ 0 \end{bmatrix}\in \R^2$, we can choose […]
• If a Matrix $A$ is Singular, then Exists Nonzero $B$ such that $AB$ is the Zero Matrix Let $A$ be a $3\times 3$ singular matrix. Then show that there exists a nonzero $3\times 3$ matrix $B$ such that $AB=O,$ where $O$ is the $3\times 3$ zero matrix.   Proof. Since $A$ is singular, the equation $A\mathbf{x}=\mathbf{0}$ has a nonzero […]

You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

How to Find the Determinant of the $3\times 3$ Matrix

Find the determinant of the matix \[A=\begin{bmatrix} 100 & 101 & 102 \\ 101 &102 &103 \\ 102 & 103...

Close