# Equivalent Definitions of Characteristic Subgroups. Center is Characteristic. ## Problem 246

Let $H$ be a subgroup of a group $G$. We call $H$ characteristic in $G$ if for any automorphism $\sigma\in \Aut(G)$ of $G$, we have $\sigma(H)=H$.

(a) Prove that if $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$, then $H$ is characteristic in $G$.

(b) Prove that the center $Z(G)$ of $G$ is characteristic in $G$. Add to solve later

## Definition

Recall that an automorphism $\sigma$ of a group $G$ is a group isomorphism from $G$ to itself.
The set of all automorphism of $G$ is denoted by $\Aut(G)$.

## Proof.

### (a) If $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$, then $H$ is characteristic in $G$

Since $\sigma$ is an automorphism, the inverse $\sigma^{-1}$ is also an automorphism of $G$.
Hence, we have
$\sigma^{-1}(H)\subset H$ by the assumption.

Applying $\sigma$, we have
$\sigma\sigma^{-1}(H) \subset \sigma(H).$ Then we obtain
\begin{align*}
H&=\sigma \sigma^{-1}(H)\subset \sigma(H)\subset H.
\end{align*}

Since the both ends are $H$, the inclusion is in fact the equality.
Thus, we obtain
$\sigma(H)=H,$ and the subgroup $H$ is characteristic in the group $G$.

### (b) The center $Z(G)$ of $G$ is characteristic in $G$

By part (a), it suffices to prove that $\sigma(Z(G)) \subset Z(G)$ for every automorphism $\sigma \in \Aut(G)$ of $G$.

Let $x\in \sigma(Z(G))$. Then there exists $y \in Z(G)$ such that $x=\sigma(y)$.
To show that $x \in Z(G)$, consider an arbitrary $g \in G$.
Then since $\sigma$ is an automorphism, we have $G=\sigma(G)$.
Thus there exists $g’$ such that $g=\sigma(g’)$.

We have
\begin{align*}
xg &=\sigma(y)\sigma(g’)\\
&=\sigma(yg’) && \text{ (since $\sigma$ is a homomorphism)}\\
&=\sigma(g’y) && \text{ (since $y \in Z(G)$)}\\
&=\sigma(g’)\sigma(y) && \text{ (since $\sigma$ is a homomorphism)}\\
&=gx.
\end{align*}
Since this is true for all $g \in G$, it follows that $x \in Z(G)$, and thus
$\sigma(Z(G)) \subset Z(G).$ This completes the proof.

## Comment.

In some textbook, a subgroup $H$ of $G$ is said to be characteristic in $G$ if $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$.
Problem (a) implies that our definition of characteristic and this alternative definition are in fact equivalent.

## Related Question.

Read the post Basic properties of characteristic groups for more problems about characteristic subgroups. Add to solve later

### 1 Response

1. 01/06/2017

[…] out the post Equivalent definitions of characteristic subgroups. Center is characteristic. for more problems about characteristic […]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

###### More in Group Theory ##### Group of Order $pq$ Has a Normal Sylow Subgroup and Solvable

Let $p, q$ be prime numbers such that $p>q$. If a group $G$ has order $pq$, then show the followings....

Close