The Preimage of a Normal Subgroup Under a Group Homomorphism is Normal

Normal Subgroups Problems and Solutions in Group Theory

Problem 116

Let $G$ and $G’$ be groups and let $f:G \to G’$ be a group homomorphism.
If $H’$ is a normal subgroup of the group $G’$, then show that $H=f^{-1}(H’)$ is a normal subgroup of the group $G$.

 
LoadingAdd to solve later

Sponsored Links

Proof.

We prove that $H$ is normal in $G$. (The fact that $H$ is a subgroup in $G$ is left as an exercise.)
For any element $g \in G$ and $h \in H$, we have
\[f(ghg^{-1})=f(g)f(h)f(g)^{-1}\] since $f$ is a group homomorphism.

Since $f(g) \in G’$, $f(h)\in H’$, and $H’$ is normal in $G’$, we see that
\[f(ghg^{-1})=f(g)f(h)f(g)^{-1} \in H’.\] Thus by the definition of $H$, the element $ghg^{-1} \in H$.
This proves that $H$ is a normal subgroup in $G$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Subgroup of Finite Index Contains a Normal Subgroup of Finite IndexSubgroup of Finite Index Contains a Normal Subgroup of Finite Index Let $G$ be a group and let $H$ be a subgroup of finite index. Then show that there exists a normal subgroup $N$ of $G$ such that $N$ is of finite index in $G$ and $N\subset H$.   Proof. The group $G$ acts on the set of left cosets $G/H$ by left multiplication. Hence […]
  • Normal Subgroups, Isomorphic Quotients, But Not IsomorphicNormal Subgroups, Isomorphic Quotients, But Not Isomorphic Let $G$ be a group. Suppose that $H_1, H_2, N_1, N_2$ are all normal subgroup of $G$, $H_1 \lhd N_2$, and $H_2 \lhd N_2$. Suppose also that $N_1/H_1$ is isomorphic to $N_2/H_2$. Then prove or disprove that $N_1$ is isomorphic to $N_2$.   Proof. We give a […]
  • Image of a Normal Subgroup Under a Surjective Homomorphism is a Normal SubgroupImage of a Normal Subgroup Under a Surjective Homomorphism is a Normal Subgroup Let $f: H \to G$ be a surjective group homomorphism from a group $H$ to a group $G$. Let $N$ be a normal subgroup of $H$. Show that the image $f(N)$ is normal in $G$.   Proof. To show that $f(N)$ is normal, we show that $gf(N)g^{-1}=f(N)$ for any $g \in […]
  • Group Homomorphism, Preimage, and Product of GroupsGroup Homomorphism, Preimage, and Product of Groups Let $G, G'$ be groups and let $f:G \to G'$ be a group homomorphism. Put $N=\ker(f)$. Then show that we have \[f^{-1}(f(H))=HN.\]   Proof. $(\subset)$ Take an arbitrary element $g\in f^{-1}(f(H))$. Then we have $f(g)\in f(H)$. It follows that there exists $h\in H$ […]
  • A Subgroup of the Smallest Prime Divisor Index of a Group is NormalA Subgroup of the Smallest Prime Divisor Index of a Group is Normal Let $G$ be a finite group of order $n$ and suppose that $p$ is the smallest prime number dividing $n$. Then prove that any subgroup of index $p$ is a normal subgroup of $G$.   Hint. Consider the action of the group $G$ on the left cosets $G/H$ by left […]
  • Equivalent Definitions of Characteristic Subgroups. Center is Characteristic.Equivalent Definitions of Characteristic Subgroups. Center is Characteristic. Let $H$ be a subgroup of a group $G$. We call $H$ characteristic in $G$ if for any automorphism $\sigma\in \Aut(G)$ of $G$, we have $\sigma(H)=H$. (a) Prove that if $\sigma(H) \subset H$ for all $\sigma \in \Aut(G)$, then $H$ is characteristic in $G$. (b) Prove that the center […]
  • A Group Homomorphism is Injective if and only if MonicA Group Homomorphism is Injective if and only if Monic Let $f:G\to G'$ be a group homomorphism. We say that $f$ is monic whenever we have $fg_1=fg_2$, where $g_1:K\to G$ and $g_2:K \to G$ are group homomorphisms for some group $K$, we have $g_1=g_2$. Then prove that a group homomorphism $f: G \to G'$ is injective if and only if it is […]
  • Pullback Group of Two Group Homomorphisms into a GroupPullback Group of Two Group Homomorphisms into a Group Let $G_1, G_1$, and $H$ be groups. Let $f_1: G_1 \to H$ and $f_2: G_2 \to H$ be group homomorphisms. Define the subset $M$ of $G_1 \times G_2$ to be \[M=\{(a_1, a_2) \in G_1\times G_2 \mid f_1(a_1)=f_2(a_2)\}.\] Prove that $M$ is a subgroup of $G_1 \times G_2$.   […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions in Mathematics
Isomorphism Criterion of Semidirect Product of Groups

Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism. The semidirect product $A \rtimes_{\phi} B$ with...

Close