# For Fixed Matrices $R, S$, the Matrices $RAS$ form a Subspace

## Problem 664

Let $V$ be the vector space of $k \times k$ matrices. Then for fixed matrices $R, S \in V$, define the subset $W = \{ R A S \mid A \in V \}$.

Prove that $W$ is a vector subspace of $V$.

## Proof.

We verify the subspace criteria: the zero vector of $V$ is in $W$, and $W$ is closed under addition and scalar multiplication.

First, let $\mathbf{0} \in V$ be the $k\times k$ zero matrix. Then $R \mathbf{0} S = \mathbf{0}$, and so $\mathbf{0} \in W$.

Now suppose $X, Y \in W$. Then there are elements $A, B \in V$ such that $RAS = X$ and $RBS = Y$. Then
$X + Y = RAS + RBS = R (A+B) S$ and so $X+Y \in W$.

Now for a scalar $c \in \mathbb{R}$ and matrix $X = RAS \in W$, we have
$cX = c RAS = R (cA )S,$ and so $cX \in W$ as well.

### More from my site

• Prove that the Center of Matrices is a Subspace Let $V$ be the vector space of $n \times n$ matrices with real coefficients, and define $W = \{ \mathbf{v} \in V \mid \mathbf{v} \mathbf{w} = \mathbf{w} \mathbf{v} \mbox{ for all } \mathbf{w} \in V \}.$ The set $W$ is called the center of $V$. Prove that $W$ is a subspace […]
• Subspaces of Symmetric, Skew-Symmetric Matrices Let $V$ be the vector space over $\R$ consisting of all $n\times n$ real matrices for some fixed integer $n$. Prove or disprove that the following subsets of $V$ are subspaces of $V$. (a) The set $S$ consisting of all $n\times n$ symmetric matrices. (b) The set $T$ consisting of […]
• The Centralizer of a Matrix is a Subspace Let $V$ be the vector space of $n \times n$ matrices, and $M \in V$ a fixed matrix. Define $W = \{ A \in V \mid AM = MA \}.$ The set $W$ here is called the centralizer of $M$ in $V$. Prove that $W$ is a subspace of $V$.   Proof. First we check that the zero […]
• The Intersection of Two Subspaces is also a Subspace Let $U$ and $V$ be subspaces of the $n$-dimensional vector space $\R^n$. Prove that the intersection $U\cap V$ is also a subspace of $\R^n$.   Definition (Intersection). Recall that the intersection $U\cap V$ is the set of elements that are both elements of $U$ […]
• The Subspace of Linear Combinations whose Sums of Coefficients are zero Let $V$ be a vector space over a scalar field $K$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in $V$ and consider the subset $W=\{a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k \mid a_1, a_2, \dots, a_k \in K \text{ and } […] • The Vector Space Consisting of All Traceless Diagonal Matrices Let V be the set of all n \times n diagonal matrices whose traces are zero. That is, \begin{equation*} V:=\left\{ A=\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 &a_{22} & \dots & 0 \\ 0 & 0 & \ddots & \vdots \\ 0 & 0 & \dots & […] • Determine the Values of a so that W_a is a Subspace For what real values of a is the set \[W_a = \{ f \in C(\mathbb{R}) \mid f(0) = a \}$ a subspace of the vector space $C(\mathbb{R})$ of all real-valued functions?   Solution. The zero element of $C(\mathbb{R})$ is the function $\mathbf{0}$ defined by […]
• Sequences Satisfying Linear Recurrence Relation Form a Subspace Let $V$ be a real vector space of all real sequences $(a_i)_{i=1}^{\infty}=(a_1, a_2, \cdots).$ Let $U$ be the subset of $V$ defined by $U=\{ (a_i)_{i=1}^{\infty} \in V \mid a_{k+2}-5a_{k+1}+3a_{k}=0, k=1, 2, \dots \}.$ Prove that $U$ is a subspace of […]

#### You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

##### A Line is a Subspace if and only if its $y$-Intercept is Zero

Let $\R^2$ be the $x$-$y$-plane. Then $\R^2$ is a vector space. A line $\ell \subset \mathbb{R}^2$ with slope $m$ and...

Close