Find All Matrices Satisfying a Given Relation

Tokyo University Linear Algebra Exam Problems and Solutions

Problem 43

Let $a$ and $b$ be two distinct positive real numbers. Define matrices
\[A:=\begin{bmatrix}
0 & a\\
a & 0
\end{bmatrix}, \,\,
B:=\begin{bmatrix}
0 & b\\
b& 0
\end{bmatrix}.\]

Find all the pairs $(\lambda, X)$, where $\lambda$ is a real number and $X$ is a non-zero real matrix satisfying the relation
\[AX+XB=\lambda X. \tag{*} \]

 

(The University of Tokyo Linear Algebra Exam)

LoadingAdd to solve later

Hint.

  1. Let $X=\begin{bmatrix}
    x_1 & x_2\\
    x_3& x_4
    \end{bmatrix}$ and compute (*).
  2. Compare entries of matrices.
  3. Rewrite it as a matrix equation.
  4. The problem is now translated to a problem of eigenvalue/eigenvectors.

Solution.

Let $X=\begin{bmatrix}
x_1 & x_2\\
x_3& x_4
\end{bmatrix}$.
Then the relation (*) becomes
\[ a\begin{bmatrix}
x_3 & x_4\\
x_1& x_2
\end{bmatrix}
+b \begin{bmatrix}
x_2 & x_1\\
x_4& x_3
\end{bmatrix}
=
\lambda \begin{bmatrix}
x_1 & x_2\\
x_3& x_4
\end{bmatrix}.\] Comparing the entries of matrices, we obtain four equations
\begin{align*}
ax_3+b x_2 &=\lambda x_1\\
ax_4+ b x_1 &=\lambda x_2\\
ax_1+b x_4 &=\lambda x_3 \\
a x_2+b x_3 &=\lambda x_4.
\end{align*}
We rewrite these equations into the matrix equation
\[ \begin{bmatrix}
-\lambda & b & a & 0 \\
b &-\lambda & 0 & a \\
a & 0 & -\lambda & b \\
0 & a & b & -\lambda
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4
\end{bmatrix}=
\begin{bmatrix}
0 \\
0 \\
0 \\
0
\end{bmatrix}.\] Thus the problem is to find all the pairs $(\lambda, X)$ satisfying this matrix equation.
Let
\[C= \begin{bmatrix}
0 & b & a & 0 \\
b & 0 & 0 & a \\
a & 0 & 0 & b \\
0 & a & b & 0
\end{bmatrix}.\]

Then the problem is equivalent to find all eigenvalues and eigenvectors of the matrix $C$.
So we first compute the characteristic polynomial of $C$ to find eigenvalues.
We have
\begin{align*}
\det(C-\lambda I)&= \begin{vmatrix}
-\lambda & b & a & 0 \\
b &-\lambda & 0 & a \\
a & 0 & -\lambda & b \\
0 & a & b & -\lambda
\end{vmatrix}\\
&=\lambda^4-2(a^2+b^2)\lambda^2+(a^2-b^2)^2.
\end{align*}
(Use cofactor expansion and simplify to obtain this.)
We solve
\[\lambda^4-2(a^2+b^2)\lambda^2+(a^2-b^2)^2=0\] for $\lambda$.
By the quadratic formula we have
\begin{align*}
\lambda^2&=a^2+b^2\pm \sqrt{(a^2+b^2)^2-(a^2-b^2)^2}\\
&=a^2+b^2\pm2ab =(a\pm b)^2.
\end{align*}
Hence we obtained four eigenvalues $\lambda=\pm (a\pm b)$.
Note that since we have four distinct eigenvalues, each eigenspace is one dimensional.

Now, let us find eigenvectors. First consider the eigenvalue $\lambda=a+b$.
In this case,
\begin{align*}
C-\lambda I =\begin{bmatrix}
-a-b & b & a & 0 \\
b & -a-b & 0 & a \\
a & 0 & -a-b & b \\
0 & a & b & -a-b
\end{bmatrix}.
\end{align*}
The eigenvector is the solutions of $(C-\lambda I)\mathbf{x}=\mathbf{0}$. The typical method to find eigenvector is to reduce the matrix $C-\lambda I$ into row echelon form.
But as we noted earlier each eigenspace is one dimensional, so if we find one nonzero vector solution, then it is a basis of the eigenspace.

For this specific matrix, we see that $\mathbf{x}=\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}$ satisfies $(C-\lambda I)\mathbf{x}=\mathbf{0}$. Therefore all the eigenvectors corresponding to eigenvalue $\lambda=a+b$ is
\[\mathbf{x}=\begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}t\] for any nonzero scalar $t$.

Similarly, we find that
\[\begin{bmatrix}
-1 \\
1 \\
1 \\
-1
\end{bmatrix}t, \quad \begin{bmatrix}
1 \\
-1 \\
1 \\
-1
\end{bmatrix}t, \quad \begin{bmatrix}
1 \\
1 \\
-1 \\
-1
\end{bmatrix}t\] for any nonzero $t$ are all the eigenvector corresponding to eigenvalue $\lambda=-a-b, a-b, -a+b$, respectively.

Therefore the solution to the problem is that the pair $(\lambda, X)$ is one of the following paris.
\begin{align*}
\left(a+b, t\begin{bmatrix}
1 & 1\\
1& 1
\end{bmatrix}\right), \,\,
\left(-a-b, t \begin{bmatrix}
-1 & 1\\
1& -1
\end{bmatrix}\right),\\
\left(a-b, t\begin{bmatrix}
1 & -1\\
1& -1
\end{bmatrix}\right), \,\,
\left(-a+b, t\begin{bmatrix}
1 & 1\\
-1& -1
\end{bmatrix}\right)
\end{align*}
for nonzero $t$ (because $X$ must be a nonzero matrix.)

Comment.

When we find an eigenvector, you could have used elementary row operations to reduce a matrix.
The reduction for this matrix is not impossible, but it takes time and a sheet of paper.

So I think it is better to use the fact that the eigenspace is 1 dimensional (for the current problem)
and guess one nonzero eigenvector like I did above.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Tokyo University Linear Algebra Exam Problems and Solutions
Symmetric Matrix and Its Eigenvalues, Eigenspaces, and Eigenspaces

Let $A$ be a $4\times 4$ real symmetric matrix. Suppose that $\mathbf{v}_1=\begin{bmatrix} -1 \\ 2 \\ 0 \\ -1 \end{bmatrix}$...

Close