# Find the Nullity of the Matrix $A+I$ if Eigenvalues are $1, 2, 3, 4, 5$ ## Problem 387

Let $A$ be an $n\times n$ matrix. Its only eigenvalues are $1, 2, 3, 4, 5$, possibly with multiplicities.

What is the nullity of the matrix $A+I_n$, where $I_n$ is the $n\times n$ identity matrix?

(The Ohio State University, Linear Algebra Final Exam Problem) Add to solve later

## Solution.

Recall that $\lambda$ is an eigenvalue of the matrix $A$ if and only if the matrix $A-\lambda I$ is singular.
Thus, $A+I$ is nonsingular, otherwise $-1$ is an eigenvalue of $A$.

Since $A+I$ is nonsingular, the we have the null space $\calN(A+I)=\{\mathbf{0}\}$, and hence the nullity of $A+I$ is zero.

## Related Question.

What is the rank of $A$?

See the post “Find the rank of the matrix $A+I$ if eigenvalues of $A$ are $1, 2, 3, 4, 5$” for a solution. Add to solve later

### 1 Response

1. 04/22/2017

[…] the post “Find the nullity of the matrix $A+I$ if eigenvalues are $1, 2, 3, 4, 5$” for a […]

This site uses Akismet to reduce spam. Learn how your comment data is processed.

###### More in Linear Algebra ##### Quiz 13 (Part 2) Find Eigenvalues and Eigenvectors of a Special Matrix

Find all eigenvalues of the matrix \[A=\begin{bmatrix} 0 & i & i & i \\ i &0 & i &...

Close