# Tagged: eigenvalue

## Problem 217

Let $A, B, C$ are $2\times 2$ diagonalizable matrices.

The graphs of characteristic polynomials of $A, B, C$ are shown below. The red graph is for $A$, the blue one for $B$, and the green one for $C$.

From this information, determine the rank of the matrices $A, B,$ and $C$.

Graphs of characteristic polynomials

## Problem 216

Let
$A=\begin{bmatrix} 1 & 3 & 3 \\ -3 &-5 &-3 \\ 3 & 3 & 1 \end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & 4 & 3 \\ -4 &-6 &-3 \\ 3 & 3 & 1 \end{bmatrix}.$ For this problem, you may use the fact that both matrices have the same characteristic polynomial:
$p_A(\lambda)=p_B(\lambda)=-(\lambda-1)(\lambda+2)^2.$

(a) Find all eigenvectors of $A$.

(b) Find all eigenvectors of $B$.

(c) Which matrix $A$ or $B$ is diagonalizable?

(d) Diagonalize the matrix stated in (c), i.e., find an invertible matrix $P$ and a diagonal matrix $D$ such that $A=PDP^{-1}$ or $B=PDP^{-1}$.

(Stanford University Linear Algebra Final Exam Problem)

## Problem 211

In this post, we explain how to diagonalize a matrix if it is diagonalizable.

As an example, we solve the following problem.

Diagonalize the matrix
$A=\begin{bmatrix} 4 & -3 & -3 \\ 3 &-2 &-3 \\ -1 & 1 & 2 \end{bmatrix}$ by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.

(Update 10/15/2017. A new example problem was added.)

## Problem 206

Determine all eigenvalues and their algebraic multiplicities of the matrix
$A=\begin{bmatrix} 1 & a & 1 \\ a &1 &a \\ 1 & a & 1 \end{bmatrix},$ where $a$ is a real number.

## Problem 202

Show that eigenvalues of a Hermitian matrix $A$ are real numbers.

(The Ohio State University Linear Algebra Exam Problem)

## Problem 200

Let
$A=\begin{bmatrix} 5 & 2 & -1 \\ 2 &2 &2 \\ -1 & 2 & 5 \end{bmatrix}.$

Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix.

Your score of this problem is equal to that dimension times five.

(The Ohio State University Linear Algebra Practice Problem)

## Problem 191

Let
$A=\begin{bmatrix} 1 & -1\\ 2& 3 \end{bmatrix}.$

Find the eigenvalues and the eigenvectors of the matrix
$B=A^4-3A^3+3A^2-2A+8E.$

(Nagoya University Linear Algebra Exam Problem)

## Problem 190

Prove that the matrix
$A=\begin{bmatrix} 1 & 1.00001 & 1 \\ 1.00001 &1 &1.00001 \\ 1 & 1.00001 & 1 \end{bmatrix}$ has one positive eigenvalue and one negative eigenvalue.

(University of California, Berkeley Qualifying Exam Problem)

## Problem 189

Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces
$E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix},\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} \quad\right\}.$

Calculate $C^4 \mathbf{u}$ for $\mathbf{u}=\begin{bmatrix} 6 \\ 8 \\ 6 \\ 9 \end{bmatrix}$ if possible. Explain why if it is not possible!

(The Ohio State University Linear Algebra Exam Problem)

## Problem 187

Let $A$ be an $n\times n$ matrix. Suppose that $\lambda_1, \lambda_2$ are distinct eigenvalues of the matrix $A$ and let $\mathbf{v}_1, \mathbf{v}_2$ be eigenvectors corresponding to $\lambda_1, \lambda_2$, respectively.

Show that the vectors $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent.

## Problem 185

Let $A=(a_{ij})$ be an $n \times n$ matrix.
We say that $A=(a_{ij})$ is a right stochastic matrix if each entry $a_{ij}$ is nonnegative and the sum of the entries of each row is $1$. That is, we have
$a_{ij}\geq 0 \quad \text{ and } \quad a_{i1}+a_{i2}+\cdots+a_{in}=1$ for $1 \leq i, j \leq n$.

Let $A=(a_{ij})$ be an $n\times n$ right stochastic matrix. Then show the following statements.

(a)The stochastic matrix $A$ has an eigenvalue $1$.

(b) The absolute value of any eigenvalue of the stochastic matrix $A$ is less than or equal to $1$.

## Problem 184

Suppose that $A$ and $P$ are $3 \times 3$ matrices and $P$ is invertible matrix.
If
$P^{-1}AP=\begin{bmatrix} 1 & 2 & 3 \\ 0 &4 &5 \\ 0 & 0 & 6 \end{bmatrix},$ then find all the eigenvalues of the matrix $A^2$.

## Problem 183

Let $A$ be an $n \times n$ matrix. Suppose that the matrix $A^2$ has a real eigenvalue $\lambda>0$. Then show that either $\sqrt{\lambda}$ or $-\sqrt{\lambda}$ is an eigenvalue of the matrix $A$.

## Problem 181

Suppose that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$.
Compute $A^2\begin{bmatrix} 4 \\ 3 \end{bmatrix}$.

(Stanford University Linear Algebra Exam Problem)

## Problem 180

Suppose the following information is known about a $3\times 3$ matrix $A$.
$A\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=6\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}=3\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}=3\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$

(a) Find the eigenvalues of $A$.

(b) Find the corresponding eigenspaces.

(c) In each of the following questions, you must give a correct reason (based on the theory of eigenvalues and eigenvectors) to get full credit.
Is $A$ a diagonalizable matrix?
Is $A$ an invertible matrix?
Is $A$ an idempotent matrix?

(Johns Hopkins University Linear Algebra Exam)

## Problem 178

Let
$\begin{bmatrix} 0 & 0 & 1 \\ 1 &0 &0 \\ 0 & 1 & 0 \end{bmatrix}.$

(a) Find the characteristic polynomial and all the eigenvalues (real and complex) of $A$. Is $A$ diagonalizable over the complex numbers?

(b) Calculate $A^{2009}$.

(Princeton University, Linear Algebra Exam)

## Problem 176

Let $A$ be an $n \times n$ matrix. We say that $A$ is idempotent if $A^2=A$.

(a) Find a nonzero, nonidentity idempotent matrix.

(b) Show that eigenvalues of an idempotent matrix $A$ is either $0$ or $1$.

(The Ohio State University, Linear Algebra Final Exam Problem)

## Problem 146

Let $A$ be an $n \times n$ nilpotent matrix, that is, $A^m=O$ for some positive integer $m$, where $O$ is the $n \times n$ zero matrix.

Prove that $A$ is a singular matrix and also prove that $I-A, I+A$ are both nonsingular matrices, where $I$ is the $n\times n$ identity matrix.

## Problem 133

Find a square root of the matrix
$A=\begin{bmatrix} 1 & 3 & -3 \\ 0 &4 &5 \\ 0 & 0 & 9 \end{bmatrix}.$

How many square roots does this matrix have?

(University of California, Berkeley Qualifying Exam)

## In a Field of Positive Characteristic, $A^p=I$ Does Not Imply that $A$ is Diagonalizable.
Show that the matrix $A=\begin{bmatrix} 1 & \alpha\\ 0& 1 \end{bmatrix}$, where $\alpha$ is an element of a field $F$ of characteristic $p>0$ satisfies $A^p=I$ and the matrix is not diagonalizable over $F$ if $\alpha \neq 0$.