Find All Eigenvalues and Corresponding Eigenvectors for the $3\times 3$ matrix

Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra

Problem 720

Find all eigenvalues and corresponding eigenvectors for the matrix $A$ if
\[
A=
\begin{bmatrix}
2 & -3 & 0 \\
2 & -5 & 0 \\
0 & 0 & 3
\end{bmatrix}
.
\]

 
LoadingAdd to solve later

Sponsored Links

Solution.

If $\lambda$ is an eigenvalue of $A$, then $\lambda$ satisfies
\begin{align*}
0
&=
\det(A-\lambda I)
=
\det\left(
\begin{bmatrix}
2 & -3 & 0 \\
2 & -5 & 0 \\
0 & 0 & 3
\end{bmatrix}

\begin{bmatrix}
\lambda & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{bmatrix}
\right)
\\
&=
\begin{vmatrix}
2-\lambda & -3 & 0 \\
2 & -5-\lambda & 0 \\
0 & 0 & 3-\lambda
\end{vmatrix}
=
(3-\lambda)
\begin{vmatrix}
2-\lambda & -3 \\
2 & -5-\lambda
\end{vmatrix}
\\
&=
(3-\lambda)
\left[(2-\lambda)(-5-\lambda)+6\right] =
(3-\lambda)
(-10+5\lambda-2\lambda+\lambda^{2}+6)
\\
&=
(3-\lambda)(\lambda^{2}+3\lambda-4)
=
-(\lambda-3)(\lambda+4)(\lambda-1)
.
\end{align*}
In the above calculation, we calculated the determinant of the $3\times 3$ matrix by expanding along the third row. From the above equation, we can conclude that the eigenvalues of $A$ are $\lambda=3,1,-4$.


We will first find the eigenvectors corresponding to the eigenvalue $\lambda=3$. Any such eigenvector $\mathbf{x}$ must satisfy
\begin{align*}
\begin{bmatrix}
0 \\ 0 \\ 0
\end{bmatrix}
&=
(A-3I)\mathbf{x}
=
\left(
\begin{bmatrix}
2 & -3 & 0 \\
2 & -5 & 0 \\
0 & 0 & 3
\end{bmatrix}
-3
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\right)
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end{bmatrix}
\\
&=
\begin{bmatrix}
-1 & -3 & 0 \\
2 & -8 & 0 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end{bmatrix}
.
\end{align*}
The augmented matrix for this system is given by
\[
\left[\begin{array}{ccc|c}
-1 & -3 & 0 & 0 \\
2 & -8 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R_{2}+2R_{1}}
\left[\begin{array}{ccc|c}
-1 & -3 & 0 & 0 \\
0 & -14 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow[-\frac{1}{14}R_{2}]{-R_{1}}
\] \[
\left[\begin{array}{ccc|c}
1 & 3 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R_{1}-3R_{2}}
\left[\begin{array}{ccc|c}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\] Therefore, the solution is given by $x_{1}=0$ and $x_{2}=0$. Since no other restrictions are given on $x_{3}$, we can conclude that any eigenvector $\mathbf{x}$ of $A$ corresponding to $\lambda=3$ must be of the form
\[
\mathbf{x}=x_{3}
\begin{bmatrix}
0 \\ 0 \\ 1
\end{bmatrix}
\] where $x_{3}\neq 0$.


Next, any eigenvector $\mathbf{x}$ corresponding to the eigenvalue $\lambda=1$ must satisfy
\begin{align*}
\begin{bmatrix}
0 \\ 0 \\ 0
\end{bmatrix}
&=
(A-3I)\mathbf{x}
=
\left(
\begin{bmatrix}
2 & -3 & 0 \\
2 & -5 & 0 \\
0 & 0 & 3
\end{bmatrix}

\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\right)
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end{bmatrix}
\\
&=
\begin{bmatrix}
1 & -3 & 0 \\
2 & -6 & 0 \\
0 & 0 & 2
\end{bmatrix}
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end{bmatrix}
.
\end{align*}
The augmented matrix for this system is given by
\[
\left[\begin{array}{ccc|c}
1 & -3 & 0 & 0 \\
2 & -6 & 0 & 0 \\
0 & 0 & 2 & 0
\end{array}\right] \xrightarrow[\frac{1}{2}R_{3}]{R_{2}-2R_{1}}
\left[\begin{array}{ccc|c}
1 & -3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \xrightarrow{R_{2}\leftrightarrow R_{3}}
\left[\begin{array}{ccc|c}
1 & -3 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\] Therefore, the solution to this system is given by $x_{1}-3x_{2}=0$, i.e. $x_{1}=3x_{2}$, and $x_{3}=0$. Therefore, any eigenvector $\mathbf{x}$ of $A$ corresponding to $\lambda=1$ must be of the form
\[
\mathbf{x}
=x_{2}
\begin{bmatrix}
3 \\ 1 \\ 0
\end{bmatrix}
\] where $x_{2}\neq 0$.


Finally, any eigenvector $\mathbf{x}$ corresponding to the eigenvalue $\lambda=-4$ must satisfy
\begin{align*}
\begin{bmatrix}
0 \\ 0 \\ 0
\end{bmatrix}
&=
(A+4I)\mathbf{x}
=
\left(
\begin{bmatrix}
2 & -3 & 0 \\
2 & -5 & 0 \\
0 & 0 & 3
\end{bmatrix}
+4
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\right)
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end{bmatrix}
\\
&=
\begin{bmatrix}
6 & -3 & 0 \\
2 & -1 & 0 \\
0 & 0 & 7
\end{bmatrix}
\begin{bmatrix}
x_{1} \\ x_{2} \\ x_{3}
\end{bmatrix}
.
\end{align*}
The augmented matrix for this system is given by
\[
\left[\begin{array}{ccc|c}
6 & -3 & 0 & 0 \\
2 & -1 & 0 & 0 \\
0 & 0 & 7 & 0
\end{array}\right] \xrightarrow[\frac{1}{7}R_{3}]{R_{2}-\frac{1}{6}R_{1}}
\left[\begin{array}{ccc|c}
6 & -3 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \] \[
\xrightarrow[R_{2}\leftrightarrow R_{3}]{\frac{1}{6}R_{1}}
\left[\begin{array}{ccc|c}
1 & -1/2 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\] Therefore, the solution to this system satifies $x_{3}=0$ and $x_{1}-(1/2)x_{2}=0$, the latter of which reduces to $x_{1}=(1/2)x_{2}$. Thus any eigenvalue $\mathbf{x}$ of $A$ corresponding to $\lambda=-4$ must be of the form
\[
\mathbf{x}
=x_{2}
\begin{bmatrix}
1/2 \\ 1 \\ 0
\end{bmatrix}
\] where $x_{2}\neq 0$.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Problems and Solutions of Eigenvalue, Eigenvector in Linear Algebra
Find All Values of $a$ which Will Guarantee that $A$ Has Eigenvalues 0, 3, and -3.

Let $A$ be the matrix given by \[ A= \begin{bmatrix} -2 & 0 & 1 \\ -5 & 3 &...

Close