Common Eigenvector of Two Matrices and Determinant of Commutator Problem 13

Let $A$ and $B$ be $n\times n$ matrices.
Suppose that these matrices have a common eigenvector $\mathbf{x}$.

Show that $\det(AB-BA)=0$. Add to solve later

Contents

Steps.

1. Write down eigenequations of $A$ and $B$ with the eigenvector $\mathbf{x}$.
2. Show that AB-BA is singular.
3. A matrix is singular if and only if the determinant of the matrix is zero.

Proof.

Let $\alpha$ and $\beta$ be eigenvalues of $A$ and $B$ such that the vector $\mathbf{x}$ is a corresponding eigenvector.
Namely we have $A \mathbf{x}=\alpha \mathbf{x}$ and $B\mathbf{x}=\beta \mathbf{x}$.

Then we have
\begin{align*}
(AB-BA)\mathbf{x}&=AB\mathbf{x}-BA\mathbf{x}=A(\beta \mathbf{x}) -B( \alpha \mathbf{x}) \\
& = \beta A \mathbf{x}- \alpha B\mathbf{x} =\beta \alpha -\alpha \beta=0.
\end{align*}

By the definition of eigenvector,  $\mathbf{x}$ is a non-zero vector. Thus the matrix $AB-BA$ is singular.
Equivalently the determinant of $AB-BA$ is zero.

Comment.

This is a simple necessary condition that $A$ and $B$ have a common eigenvector.

Here are few derived questions.

• Is this a sufficient condition?
• If so prove it.
• If not give a counterexample,
• and find a necessary and sufficient condition. Add to solve later

More from my site

You may also like...

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra Transpose of a Matrix and Eigenvalues and Related Questions

Let $A$ be an $n \times n$ real matrix. Prove the followings. (a) The matrix $AA^{\trans}$ is a symmetric matrix....

Close