The Inverse Matrix is Unique
Problem 251
Let $A$ be an $n\times n$ invertible matrix. Prove that the inverse matrix of $A$ is uniques.
Add to solve laterLet $A$ be an $n\times n$ invertible matrix. Prove that the inverse matrix of $A$ is uniques.
Add to solve later Let $\mathbf{u}$ and $\mathbf{v}$ be vectors in $\R^n$, and let $I$ be the $n \times n$ identity matrix. Suppose that the inner product of $\mathbf{u}$ and $\mathbf{v}$ satisfies
\[\mathbf{v}^{\trans}\mathbf{u}\neq -1.\]
Define the matrix
\[A=I+\mathbf{u}\mathbf{v}^{\trans}.\]
Prove that $A$ is invertible and the inverse matrix is given by the formula
\[A^{-1}=I-a\mathbf{u}\mathbf{v}^{\trans},\]
where
\[a=\frac{1}{1+\mathbf{v}^{\trans}\mathbf{u}}.\]
This formula is called the Sherman-Woodberry formula.
Let
\[A=\begin{bmatrix}
1 & 3 & 3 \\
-3 &-5 &-3 \\
3 & 3 & 1
\end{bmatrix} \text{ and } B=\begin{bmatrix}
2 & 4 & 3 \\
-4 &-6 &-3 \\
3 & 3 & 1
\end{bmatrix}.\]
For this problem, you may use the fact that both matrices have the same characteristic polynomial:
\[p_A(\lambda)=p_B(\lambda)=-(\lambda-1)(\lambda+2)^2.\]
(a) Find all eigenvectors of $A$.
(b) Find all eigenvectors of $B$.
(c) Which matrix $A$ or $B$ is diagonalizable?
(d) Diagonalize the matrix stated in (c), i.e., find an invertible matrix $P$ and a diagonal matrix $D$ such that $A=PDP^{-1}$ or $B=PDP^{-1}$.
(Stanford University Linear Algebra Final Exam Problem)
Read solution
Find the inverse matrix of the matrix
\[A=\begin{bmatrix}
\frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt]
\frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt]
-\frac{3}{7} & \frac{6}{7} & -\frac{2}{7}
\end{bmatrix}.\]
In this post, we explain how to diagonalize a matrix if it is diagonalizable.
As an example, we solve the following problem.
Diagonalize the matrix
\[A=\begin{bmatrix}
4 & -3 & -3 \\
3 &-2 &-3 \\
-1 & 1 & 2
\end{bmatrix}\]
by finding a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$.
(Update 10/15/2017. A new example problem was added.)
Read solution
Let $A$ be an $n\times n$ matrix with real number entries.
Show that if $A$ is diagonalizable by an orthogonal matrix, then $A$ is a symmetric matrix.
Add to solve laterLet A be the matrix
\[\begin{bmatrix}
1 & -1 & 0 \\
0 &1 &-1 \\
0 & 0 & 1
\end{bmatrix}.\]
Is the matrix $A$ invertible? If not, then explain why it isn’t invertible. If so, then find the inverse.
(The Ohio State University Linear Algebra Exam)
Add to solve laterConsider the system of linear equations
\begin{align*}
x_1&= 2, \\
-2x_1 + x_2 &= 3, \\
5x_1-4x_2 +x_3 &= 2
\end{align*}
(a) Find the coefficient matrix and its inverse matrix.
(b) Using the inverse matrix, solve the system of linear equations.
(The Ohio State University, Linear Algebra Exam)
Add to solve laterLet $A$ be an $n\times n$ matrix such that $A^k=I_n$, where $k\in \N$ and $I_n$ is the $n \times n$ identity matrix.
Show that the trace of $(A^{-1})^{\trans}$ is the conjugate of the trace of $A$. That is, show that $\tr((A^{-1})^{\trans})=\overline{\tr(A)}$.
Add to solve later
Suppose that a real matrix $A$ maps each of the following vectors
\[\mathbf{x}_1=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}, \mathbf{x}_2=\begin{bmatrix}
0 \\
1 \\
1
\end{bmatrix}, \mathbf{x}_3=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \]
into the vectors
\[\mathbf{y}_1=\begin{bmatrix}
1 \\
2 \\
0
\end{bmatrix}, \mathbf{y}_2=\begin{bmatrix}
-1 \\
0 \\
3
\end{bmatrix}, \mathbf{y}_3=\begin{bmatrix}
3 \\
1 \\
1
\end{bmatrix},\]
respectively.
That is, $A\mathbf{x}_i=\mathbf{y}_i$ for $i=1,2,3$.
Find the matrix $A$.
(Kyoto University Exam)
Read solution
A square matrix $A$ is called idempotent if $A^2=A$.
Show that a square invertible idempotent matrix is the identity matrix.
Add to solve later