Determine all $2\times 2$ matrices $A$ such that $A$ has eigenvalues $2$ and $-1$ with corresponding eigenvectors
\[\begin{bmatrix}
1 \\
0
\end{bmatrix} \text{ and } \begin{bmatrix}
2 \\
1
\end{bmatrix},\]
respectively.
Determine the values of $x$ so that the matrix
\[A=\begin{bmatrix}
1 & 1 & x \\
1 &x &x \\
x & x & x
\end{bmatrix}\]
is invertible.
For those values of $x$, find the inverse matrix $A^{-1}$.
Let
\[A=\begin{bmatrix}
3 & -12 & 4 \\
-1 &0 &-2 \\
-1 & 5 & -1
\end{bmatrix}.\]
Then find all eigenvalues of $A^5$. If $A$ is invertible, then find all the eigenvalues of $A^{-1}$.
Let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis of the vector space $\R^2$, where
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
1
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
1 \\
-1
\end{bmatrix}.\]
The action of a linear transformation $T:\R^2\to \R^3$ on the basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ is given by
\begin{align*}
T(\mathbf{v}_1)=\begin{bmatrix}
2 \\
4 \\
6
\end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix}
0 \\
8 \\
10
\end{bmatrix}.
\end{align*}
Find the formula of $T(\mathbf{x})$, where
\[\mathbf{x}=\begin{bmatrix}
x \\
y
\end{bmatrix}\in \R^2.\]
Let $T$ be the linear transformation from the $3$-dimensional vector space $\R^3$ to $\R^3$ itself satisfying the following relations.
\begin{align*}
T\left(\, \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \,\right)
=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, \qquad T\left(\, \begin{bmatrix}
2 \\
3 \\
5
\end{bmatrix} \, \right) =
\begin{bmatrix}
0 \\
2 \\
-1
\end{bmatrix}, \qquad
T \left( \, \begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \, \right)=
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}.
\end{align*}
Then for any vector
\[\mathbf{x}=\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}\in \R^3,\]
find the formula for $T(\mathbf{x})$.
(a) Is it true that $A$ must commute with its transpose?
(b) Suppose that the columns of $A$ (considered as vectors) form an orthonormal set.
Is it true that the rows of $A$ must also form an orthonormal set?
(University of California, Berkeley, Linear Algebra Qualifying Exam)
Let $A$ be the coefficient matrix of the system of linear equations
\begin{align*}
-x_1-2x_2&=1\\
2x_1+3x_2&=-1.
\end{align*}
(a) Solve the system by finding the inverse matrix $A^{-1}$.
(b) Let $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$ be the solution of the system obtained in part (a).
Calculate and simplify
\[A^{2017}\mathbf{x}.\]
(The Ohio State University, Linear Algebra Midterm Exam Problem)
Find the inverse matrix of
\[A=\begin{bmatrix}
1 & 1 & 2 \\
0 &0 &1 \\
1 & 0 & 1
\end{bmatrix}\]
if it exists. If you think there is no inverse matrix of $A$, then give a reason.
(The Ohio State University, Linear Algebra Midterm Exam Problem)
(a) Find the inverse matrix of
\[A=\begin{bmatrix}
1 & 0 & 1 \\
1 &0 &0 \\
2 & 1 & 1
\end{bmatrix}\]
if it exists. If you think there is no inverse matrix of $A$, then give a reason.
(b) Find a nonsingular $2\times 2$ matrix $A$ such that
\[A^3=A^2B-3A^2,\]
where
\[B=\begin{bmatrix}
4 & 1\\
2& 6
\end{bmatrix}.\]
Verify that the matrix $A$ you obtained is actually a nonsingular matrix.
(The Ohio State University, Linear Algebra Midterm Exam Problem)
Let $\mathbf{v}_1$ and $\mathbf{v}_2$ be $2$-dimensional vectors and let $A$ be a $2\times 2$ matrix.
(a) Show that if $\mathbf{v}_1, \mathbf{v}_2$ are linearly dependent vectors, then the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly dependent.
(b) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors, can we conclude that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent?
(c) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors and $A$ is nonsingular, then show that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent.
Determine whether there exists a nonsingular matrix $A$ if
\[A^2=AB+2A,\]
where $B$ is the following matrix.
If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$.
Let $A$ be the following $3\times 3$ upper triangular matrix.
\[A=\begin{bmatrix}
1 & x & y \\
0 &1 &z \\
0 & 0 & 1
\end{bmatrix},\]
where $x, y, z$ are some real numbers.
Determine whether the matrix $A$ is invertible or not. If it is invertible, then find the inverse matrix $A^{-1}$.