Tagged: inverse matrix

10 True of False Problems about Nonsingular / Invertible Matrices

Problem 500

10 questions about nonsingular matrices, invertible matrices, and linearly independent vectors.

The quiz is designed to test your understanding of the basic properties of these topics.

You can take the quiz as many times as you like.

The solutions will be given after completing all the 10 problems.
Click the View question button to see the solutions.

 
Read solution

LoadingAdd to solve later

Solve the System of Linear Equations Using the Inverse Matrix of the Coefficient Matrix

Problem 442

Consider the following system of linear equations
\begin{align*}
2x+3y+z&=-1\\
3x+3y+z&=1\\
2x+4y+z&=-2.
\end{align*}

(a) Find the coefficient matrix $A$ for this system.

(b) Find the inverse matrix of the coefficient matrix found in (a)

(c) Solve the system using the inverse matrix $A^{-1}$.

 
Read solution

LoadingAdd to solve later

Find a General Formula of a Linear Transformation From $\R^2$ to $\R^3$

Problem 353

Suppose that $T: \R^2 \to \R^3$ is a linear transformation satisfying
\[T\left(\, \begin{bmatrix}
1 \\
2
\end{bmatrix}\,\right)=\begin{bmatrix}
3 \\
4 \\
5
\end{bmatrix} \text{ and } T\left(\, \begin{bmatrix}
0 \\
1
\end{bmatrix} \,\right)=\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}.\] Find a general formula for
\[T\left(\, \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \,\right).\]

(The Ohio State University, Linear Algebra Math 2568 Exam Problem)

 
Read solution

LoadingAdd to solve later

Give a Formula For a Linear Transformation From $\R^2$ to $\R^3$

Problem 339

Let $\{\mathbf{v}_1, \mathbf{v}_2\}$ be a basis of the vector space $\R^2$, where
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
1
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
1 \\
-1
\end{bmatrix}.\] The action of a linear transformation $T:\R^2\to \R^3$ on the basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ is given by
\begin{align*}
T(\mathbf{v}_1)=\begin{bmatrix}
2 \\
4 \\
6
\end{bmatrix} \text{ and } T(\mathbf{v}_2)=\begin{bmatrix}
0 \\
8 \\
10
\end{bmatrix}.
\end{align*}

Find the formula of $T(\mathbf{x})$, where
\[\mathbf{x}=\begin{bmatrix}
x \\
y
\end{bmatrix}\in \R^2.\]

 
Read solution

LoadingAdd to solve later

Determine linear transformation using matrix representation

Problem 324

Let $T$ be the linear transformation from the $3$-dimensional vector space $\R^3$ to $\R^3$ itself satisfying the following relations.
\begin{align*}
T\left(\, \begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix} \,\right)
=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, \qquad T\left(\, \begin{bmatrix}
2 \\
3 \\
5
\end{bmatrix} \, \right) =
\begin{bmatrix}
0 \\
2 \\
-1
\end{bmatrix}, \qquad
T \left( \, \begin{bmatrix}
0 \\
1 \\
2
\end{bmatrix} \, \right)=
\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}.
\end{align*}
Then for any vector
\[\mathbf{x}=\begin{bmatrix}
x \\
y \\
z
\end{bmatrix}\in \R^3,\] find the formula for $T(\mathbf{x})$.

 
Read solution

LoadingAdd to solve later

Problems and Solutions About Similar Matrices

Problem 319

Let $A, B$, and $C$ be $n \times n$ matrices and $I$ be the $n\times n$ identity matrix.
Prove the following statements.

(a) If $A$ is similar to $B$, then $B$ is similar to $A$.

(b) $A$ is similar to itself.

(c) If $A$ is similar to $B$ and $B$ is similar to $C$, then $A$ is similar to $C$.

(d) If $A$ is similar to the identity matrix $I$, then $A=I$.

(e) If $A$ or $B$ is nonsingular, then $AB$ is similar to $BA$.

(f) If $A$ is similar to $B$, then $A^k$ is similar to $B^k$ for any positive integer $k$.

 
Read solution

LoadingAdd to solve later

If Column Vectors Form Orthonormal set, is Row Vectors Form Orthonormal Set?

Problem 317

Suppose that $A$ is a real $n\times n$ matrix.

(a) Is it true that $A$ must commute with its transpose?

(b) Suppose that the columns of $A$ (considered as vectors) form an orthonormal set.
Is it true that the rows of $A$ must also form an orthonormal set?

(University of California, Berkeley, Linear Algebra Qualifying Exam)

 
Read solution

LoadingAdd to solve later

Solve a System by the Inverse Matrix and Compute $A^{2017}\mathbf{x}$

Problem 300

Let $A$ be the coefficient matrix of the system of linear equations
\begin{align*}
-x_1-2x_2&=1\\
2x_1+3x_2&=-1.
\end{align*}

(a) Solve the system by finding the inverse matrix $A^{-1}$.

(b) Let $\mathbf{x}=\begin{bmatrix}
x_1 \\
x_2
\end{bmatrix}$ be the solution of the system obtained in part (a).
Calculate and simplify
\[A^{2017}\mathbf{x}.\]

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Compute and Simplify the Matrix Expression Including Transpose and Inverse Matrices

Problem 297

Let $A, B, C$ be the following $3\times 3$ matrices.
\[A=\begin{bmatrix}
1 & 2 & 3 \\
4 &5 &6 \\
7 & 8 & 9
\end{bmatrix}, B=\begin{bmatrix}
1 & 0 & 1 \\
0 &3 &0 \\
1 & 0 & 5
\end{bmatrix}, C=\begin{bmatrix}
-1 & 0\ & 1 \\
0 &5 &6 \\
3 & 0 & 1
\end{bmatrix}.\] Then compute and simplify the following expression.
\[(A^{\trans}-B)^{\trans}+C(B^{-1}C)^{-1}.\]

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Quiz 4: Inverse Matrix/ Nonsingular Matrix Satisfying a Relation

Problem 289

(a) Find the inverse matrix of
\[A=\begin{bmatrix}
1 & 0 & 1 \\
1 &0 &0 \\
2 & 1 & 1
\end{bmatrix}\] if it exists. If you think there is no inverse matrix of $A$, then give a reason.

(b) Find a nonsingular $2\times 2$ matrix $A$ such that
\[A^3=A^2B-3A^2,\] where
\[B=\begin{bmatrix}
4 & 1\\
2& 6
\end{bmatrix}.\] Verify that the matrix $A$ you obtained is actually a nonsingular matrix.

(The Ohio State University, Linear Algebra Midterm Exam Problem)
 
Read solution

LoadingAdd to solve later

Linearly Independent vectors $\mathbf{v}_1, \mathbf{v}_2$ and Linearly Independent Vectors $A\mathbf{v}_1, A\mathbf{v}_2$ for a Nonsingular Matrix

Problem 284

Let $\mathbf{v}_1$ and $\mathbf{v}_2$ be $2$-dimensional vectors and let $A$ be a $2\times 2$ matrix.

(a) Show that if $\mathbf{v}_1, \mathbf{v}_2$ are linearly dependent vectors, then the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly dependent.

(b) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors, can we conclude that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent?

(c) If $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent vectors and $A$ is nonsingular, then show that the vectors $A\mathbf{v}_1, A\mathbf{v}_2$ are also linearly independent.

 
Read solution

LoadingAdd to solve later

Find a Nonsingular Matrix Satisfying Some Relation

Problem 280

Determine whether there exists a nonsingular matrix $A$ if
\[A^2=AB+2A,\] where $B$ is the following matrix.
If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$.

(a) \[B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
1 & 2 & -2
\end{bmatrix}\]

(b) \[B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
2 & 1 & -4
\end{bmatrix}.\]

 
Read solution

LoadingAdd to solve later

The Inverse Matrix of an Upper Triangular Matrix with Variables

Problem 275

Let $A$ be the following $3\times 3$ upper triangular matrix.
\[A=\begin{bmatrix}
1 & x & y \\
0 &1 &z \\
0 & 0 & 1
\end{bmatrix},\] where $x, y, z$ are some real numbers.

Determine whether the matrix $A$ is invertible or not. If it is invertible, then find the inverse matrix $A^{-1}$.

 
Read solution

LoadingAdd to solve later