That the inverse matrix of $A$ is unique means that there is only one inverse matrix of $A$.
(That’s why we say “the” inverse matrix of $A$ and denote it by $A^{-1}$.)
So to prove the uniqueness, suppose that you have two inverse matrices $B$ and $C$ and show that in fact $B=C$.

Recall that $B$ is the inverse matrix if it satisfies
\[AB=BA=I,\]
where $I$ is the identity matrix.

Proof.

Suppose that there are two inverse matrices $B$ and $C$ of the matrix $A$. Then they satisfy
\[AB=BA=I \tag{*}\]
and
\[AC=CA=I \tag{**}.\]

To show that the uniqueness of the inverse matrix, we show that $B=C$ as follows. Let $I$ be the $n\times n$ identity matrix.
We have
\begin{align*}
B&=BI\\
&=B(AC) && \text{ by (**)}\\
&=(BA)C &&\text{ by the associativity}\\
&=IC && \text{ by (*)}\\
&=C.
\end{align*}
Thus, we must have $B=C$, and there is only one inverse matrix of $A$.

Sherman-Woodbery Formula for the Inverse Matrix
Let $\mathbf{u}$ and $\mathbf{v}$ be vectors in $\R^n$, and let $I$ be the $n \times n$ identity matrix. Suppose that the inner product of $\mathbf{u}$ and $\mathbf{v}$ satisfies
\[\mathbf{v}^{\trans}\mathbf{u}\neq -1.\]
Define the matrix […]

Problems and Solutions About Similar Matrices
Let $A, B$, and $C$ be $n \times n$ matrices and $I$ be the $n\times n$ identity matrix.
Prove the following statements.
(a) If $A$ is similar to $B$, then $B$ is similar to $A$.
(b) $A$ is similar to itself.
(c) If $A$ is similar to $B$ and $B$ […]

Find a Nonsingular Matrix Satisfying Some Relation
Determine whether there exists a nonsingular matrix $A$ if
\[A^2=AB+2A,\]
where $B$ is the following matrix.
If such a nonsingular matrix $A$ exists, find the inverse matrix $A^{-1}$.
(a) \[B=\begin{bmatrix}
-1 & 1 & -1 \\
0 &-1 &0 \\
1 & 2 & […]

Determine Whether the Following Matrix Invertible. If So Find Its Inverse Matrix.
Let A be the matrix
\[\begin{bmatrix}
1 & -1 & 0 \\
0 &1 &-1 \\
0 & 0 & 1
\end{bmatrix}.\]
Is the matrix $A$ invertible? If not, then explain why it isn’t invertible. If so, then find the inverse.
(The Ohio State University Linear Algebra […]

The Inverse Matrix of the Transpose is the Transpose of the Inverse Matrix
Let $A$ be an $n\times n$ invertible matrix. Then prove the transpose $A^{\trans}$ is also invertible and that the inverse matrix of the transpose $A^{\trans}$ is the transpose of the inverse matrix $A^{-1}$.
Namely, show […]

The Inverse Matrix of an Upper Triangular Matrix with Variables
Let $A$ be the following $3\times 3$ upper triangular matrix.
\[A=\begin{bmatrix}
1 & x & y \\
0 &1 &z \\
0 & 0 & 1
\end{bmatrix},\]
where $x, y, z$ are some real numbers.
Determine whether the matrix $A$ is invertible or not. If it is invertible, then find […]

Two Matrices with the Same Characteristic Polynomial. Diagonalize if Possible.
Let
\[A=\begin{bmatrix}
1 & 3 & 3 \\
-3 &-5 &-3 \\
3 & 3 & 1
\end{bmatrix} \text{ and } B=\begin{bmatrix}
2 & 4 & 3 \\
-4 &-6 &-3 \\
3 & 3 & 1
\end{bmatrix}.\]
For this problem, you may use the fact that both matrices have the same characteristic […]