A Ring is Commutative if Whenever $ab=ca$, then $b=c$

Problems and solutions of ring theory in abstract algebra

Problem 615

Let $R$ be a ring and assume that whenever $ab=ca$ for some elements $a, b, c\in R$, we have $b=c$.

Then prove that $R$ is a commutative ring.

 
LoadingAdd to solve later

Proof.

Let $x, y$ be arbitrary elements in $R$. We want to show that $xy=yx$.
Consider the identity
\[y(xy)=(yx)y.\] This can be written as $ab=ca$ if we put $a=y, b=xy, c=yx$.

It follows from the assumption that we have $b=c$.
Equivalently, we have $xy=yx$.

As this is true for any $x, y\in R$, we conclude that $R$ is a commutative ring.


LoadingAdd to solve later

More from my site

  • If the Quotient Ring is a Field, then the Ideal is MaximalIf the Quotient Ring is a Field, then the Ideal is Maximal Let $R$ be a ring with unit $1\neq 0$. Prove that if $M$ is an ideal of $R$ such that $R/M$ is a field, then $M$ is a maximal ideal of $R$. (Do not assume that the ring $R$ is commutative.)   Proof. Let $I$ be an ideal of $R$ such that \[M \subset I \subset […]
  • Is the Set of Nilpotent Element an Ideal?Is the Set of Nilpotent Element an Ideal? Is it true that a set of nilpotent elements in a ring $R$ is an ideal of $R$? If so, prove it. Otherwise give a counterexample.   Proof. We give a counterexample. Let $R$ be the noncommutative ring of $2\times 2$ matrices with real […]
  • Ideal Quotient (Colon Ideal) is an IdealIdeal Quotient (Colon Ideal) is an Ideal Let $R$ be a commutative ring. Let $S$ be a subset of $R$ and let $I$ be an ideal of $I$. We define the subset \[(I:S):=\{ a \in R \mid aS\subset I\}.\] Prove that $(I:S)$ is an ideal of $R$. This ideal is called the ideal quotient, or colon ideal.   Proof. Let $a, […]
  • If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field.If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field. Let $R$ be a commutative ring with $1$. Prove that if every proper ideal of $R$ is a prime ideal, then $R$ is a field.   Proof. As the zero ideal $(0)$ of $R$ is a proper ideal, it is a prime ideal by assumption. Hence $R=R/\{0\}$ is an integral […]
  • Equivalent Conditions For a Prime Ideal in a Commutative RingEquivalent Conditions For a Prime Ideal in a Commutative Ring Let $R$ be a commutative ring and let $P$ be an ideal of $R$. Prove that the following statements are equivalent: (a) The ideal $P$ is a prime ideal. (b) For any two ideals $I$ and $J$, if $IJ \subset P$ then we have either $I \subset P$ or $J \subset P$.   Proof. […]
  • Prime Ideal is Irreducible in a Commutative RingPrime Ideal is Irreducible in a Commutative Ring Let $R$ be a commutative ring. An ideal $I$ of $R$ is said to be irreducible if it cannot be written as an intersection of two ideals of $R$ which are strictly larger than $I$. Prove that if $\frakp$ is a prime ideal of the commutative ring $R$, then $\frakp$ is […]
  • Nilpotent Element a in a Ring and Unit Element $1-ab$Nilpotent Element a in a Ring and Unit Element $1-ab$ Let $R$ be a commutative ring with $1 \neq 0$. An element $a\in R$ is called nilpotent if $a^n=0$ for some positive integer $n$. Then prove that if $a$ is a nilpotent element of $R$, then $1-ab$ is a unit for all $b \in R$.   We give two proofs. Proof 1. Since $a$ […]
  • Characteristic of an Integral Domain is 0 or a Prime NumberCharacteristic of an Integral Domain is 0 or a Prime Number Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.   Definition of the characteristic of a ring. The characteristic of a commutative ring $R$ with $1$ is defined as […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

More in Ring theory
Prime Ideal Problems and Solution in Ring Theory in Mathematics
If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field.

Let $R$ be a commutative ring with $1$. Prove that if every proper ideal of $R$ is a prime ideal,...

Close