Let $g\neq e$ be an element in the group $G$ such that $g^5=e$.
As $5$ is a prime number, this yields that the order of $g$ is $5$.

Consider the subgroup $\langle g \rangle$ generated by $g$.
As the order of $g$ is $5$, the order of the subgroup $\langle g \rangle$ is $5$.

If $h\neq e$ is another element in $G$ such that $h^5=e$, then we have either $\langle g \rangle=\langle h \rangle$ or $\langle g \rangle \cap \langle h \rangle=\{e\}$ as the intersection of these two subgroups is a subgroup of $\langle g \rangle$.

It follows that $S$ is the union of subgroups of order $5$ that intersect only at the identity element $e$.
Thus the number of elements in $S$ are $4n+1$ for some nonnegative integer $n$.

A Simple Abelian Group if and only if the Order is a Prime Number
Let $G$ be a group. (Do not assume that $G$ is a finite group.)
Prove that $G$ is a simple abelian group if and only if the order of $G$ is a prime number.
Definition.
A group $G$ is called simple if $G$ is a nontrivial group and the only normal subgroups of $G$ is […]

If There are 28 Elements of Order 5, How Many Subgroups of Order 5?
Let $G$ be a group. Suppose that the number of elements in $G$ of order $5$ is $28$.
Determine the number of distinct subgroups of $G$ of order $5$.
Solution.
Let $g$ be an element in $G$ of order $5$.
Then the subgroup $\langle g \rangle$ generated by $g$ is […]

Fundamental Theorem of Finitely Generated Abelian Groups and its application
In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem.
Problem.
Let $G$ be a finite abelian group of order $n$.
If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]

Determine the Number of Elements of Order 3 in a Non-Cyclic Group of Order 57
Let $G$ be a group of order $57$. Assume that $G$ is not a cyclic group.
Then determine the number of elements in $G$ of order $3$.
Proof.
Observe the prime factorization $57=3\cdot 19$.
Let $n_{19}$ be the number of Sylow $19$-subgroups of $G$.
By […]

A Group of Order $20$ is Solvable
Prove that a group of order $20$ is solvable.
Hint.
Show that a group of order $20$ has a unique normal $5$-Sylow subgroup by Sylow's theorem.
See the post summary of Sylow’s Theorem to review Sylow's theorem.
Proof.
Let $G$ be a group of order $20$. The […]

Normal Subgroup Whose Order is Relatively Prime to Its Index
Let $G$ be a finite group and let $N$ be a normal subgroup of $G$.
Suppose that the order $n$ of $N$ is relatively prime to the index $|G:N|=m$.
(a) Prove that $N=\{a\in G \mid a^n=e\}$.
(b) Prove that $N=\{b^m \mid b\in G\}$.
Proof.
Note that as $n$ and […]

Group of Order $pq$ Has a Normal Sylow Subgroup and Solvable
Let $p, q$ be prime numbers such that $p>q$.
If a group $G$ has order $pq$, then show the followings.
(a) The group $G$ has a normal Sylow $p$-subgroup.
(b) The group $G$ is solvable.
Definition/Hint
For (a), apply Sylow's theorem. To review Sylow's theorem, […]

Infinite Cyclic Groups Do Not Have Composition Series
Let $G$ be an infinite cyclic group. Then show that $G$ does not have a composition series.
Proof.
Let $G=\langle a \rangle$ and suppose that $G$ has a composition series
\[G=G_0\rhd G_1 \rhd \cdots G_{m-1} \rhd G_m=\{e\},\]
where $e$ is the identity element of […]