Equivalent Conditions For a Prime Ideal in a Commutative Ring

Prime Ideal Problems and Solution in Ring Theory in Mathematics

Problem 174

Let $R$ be a commutative ring and let $P$ be an ideal of $R$. Prove that the following statements are equivalent:

(a) The ideal $P$ is a prime ideal.

(b) For any two ideals $I$ and $J$, if $IJ \subset P$ then we have either $I \subset P$ or $J \subset P$.

 
LoadingAdd to solve later

Sponsored Links


Proof.

(a) $\implies$ (b)

Suppose that $P$ is a prime ideal. Let $I$ and $J$ be ideals such that $IJ \subset P$. Assume that
\[I \not \subset P \text{ and } J \not \subset P.\] Then there exist
\[a \in I \setminus P \text{ and } b\in J \setminus P.\]

Then the element $ab$ is in both $I$ and $J$ since $I, J$ are ideals. Then we have
\[ab \in IJ \subset P\] and this implies either $a \in P$ or $b\in P$ since $P$ is a prime ideal.

However, this contradicts the choice of the elements $a, b$.
Therefore, we must have
\[I \subset P \text{ or } J \subset P.\]

(b) $\implies$ (a)

Now we assume statement (b) is true.
Suppose that $ab \in P$, where $a, b \in R$.
Let $I=(a)$, $J=(b)$ be ideals generated by $a$ and $b$, respectively.

Then we have
\[IJ=(ab)\subset P\] since $ab \in P$, and statement (b) implies that we have either $(a)=I\subset P $ or $(b)=J \subset P$.

Hence we have either $a \in P$ or $b\in P$.
Thus $P$ is a prime ideal.


LoadingAdd to solve later

Sponsored Links

More from my site

  • Prime Ideal is Irreducible in a Commutative RingPrime Ideal is Irreducible in a Commutative Ring Let $R$ be a commutative ring. An ideal $I$ of $R$ is said to be irreducible if it cannot be written as an intersection of two ideals of $R$ which are strictly larger than $I$. Prove that if $\frakp$ is a prime ideal of the commutative ring $R$, then $\frakp$ is […]
  • If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field.If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field. Let $R$ be a commutative ring with $1$. Prove that if every proper ideal of $R$ is a prime ideal, then $R$ is a field.   Proof. As the zero ideal $(0)$ of $R$ is a proper ideal, it is a prime ideal by assumption. Hence $R=R/\{0\}$ is an integral […]
  • Nilpotent Element a in a Ring and Unit Element $1-ab$Nilpotent Element a in a Ring and Unit Element $1-ab$ Let $R$ be a commutative ring with $1 \neq 0$. An element $a\in R$ is called nilpotent if $a^n=0$ for some positive integer $n$. Then prove that if $a$ is a nilpotent element of $R$, then $1-ab$ is a unit for all $b \in R$.   We give two proofs. Proof 1. Since $a$ […]
  • A Prime Ideal in the Ring $\Z[\sqrt{10}]$A Prime Ideal in the Ring $\Z[\sqrt{10}]$ Consider the ring \[\Z[\sqrt{10}]=\{a+b\sqrt{10} \mid a, b \in \Z\}\] and its ideal \[P=(2, \sqrt{10})=\{a+b\sqrt{10} \mid a, b \in \Z, 2|a\}.\] Show that $p$ is a prime ideal of the ring $\Z[\sqrt{10}]$.   Definition of a prime ideal. An ideal $P$ of a ring $R$ is […]
  • The Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral DomainThe Ideal $(x)$ is Prime in the Polynomial Ring $R[x]$ if and only if the Ring $R$ is an Integral Domain Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain. Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a […]
  • In a Principal Ideal Domain (PID), a Prime Ideal is a Maximal IdealIn a Principal Ideal Domain (PID), a Prime Ideal is a Maximal Ideal Let $R$ be a principal ideal domain (PID) and let $P$ be a nonzero prime ideal in $R$. Show that $P$ is a maximal ideal in $R$.   Definition A commutative ring $R$ is a principal ideal domain (PID) if $R$ is a domain and any ideal $I$ is generated by a single element […]
  • Characteristic of an Integral Domain is 0 or a Prime NumberCharacteristic of an Integral Domain is 0 or a Prime Number Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.   Definition of the characteristic of a ring. The characteristic of a commutative ring $R$ with $1$ is defined as […]
  • $(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain.$(x^3-y^2)$ is a Prime Ideal in the Ring $R[x, y]$, $R$ is an Integral Domain. Let $R$ be an integral domain. Then prove that the ideal $(x^3-y^2)$ is a prime ideal in the ring $R[x, y]$.   Proof. Consider the ring $R[t]$, where $t$ is a variable. Since $R$ is an integral domain, so is $R[t]$. Define the function $\Psi:R[x,y] \to R[t]$ sending […]

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Ring theory
Problems and solutions of ring theory in abstract algebra
Prime Ideal is Irreducible in a Commutative Ring

Let $R$ be a commutative ring. An ideal $I$ of $R$ is said to be irreducible if it cannot be...

Close