Three Equivalent Conditions for an Ideal is Prime in a PID
Problem 724
Let $R$ be a principal ideal domain. Let $a\in R$ be a nonzero, non-unit element. Show that the following are equivalent.
(1) The ideal $(a)$ generated by $a$ is maximal.
(2) The ideal $(a)$ is prime.
(3) The element $a$ is irreducible.