# Tagged: dimension of a vector space

## Problem 705

For a set $S$ and a vector space $V$ over a scalar field $\K$, define the set of all functions from $S$ to $V$
$\Fun ( S , V ) = \{ f : S \rightarrow V \} .$

For $f, g \in \Fun(S, V)$, $z \in \K$, addition and scalar multiplication can be defined by
$(f+g)(s) = f(s) + g(s) \, \mbox{ and } (cf)(s) = c (f(s)) \, \mbox{ for all } s \in S .$

(a) Prove that $\Fun(S, V)$ is a vector space over $\K$. What is the zero element?

(b) Let $S_1 = \{ s \}$ be a set consisting of one element. Find an isomorphism between $\Fun(S_1 , V)$ and $V$ itself. Prove that the map you find is actually a linear isomorpism.

(c) Suppose that $B = \{ e_1 , e_2 , \cdots , e_n \}$ is a basis of $V$. Use $B$ to construct a basis of $\Fun(S_1 , V)$.

(d) Let $S = \{ s_1 , s_2 , \cdots , s_m \}$. Construct a linear isomorphism between $\Fun(S, V)$ and the vector space of $n$-tuples of $V$, defined as
$V^m = \{ (v_1 , v_2 , \cdots , v_m ) \mid v_i \in V \mbox{ for all } 1 \leq i \leq m \} .$

(e) Use the basis $B$ of $V$ to constract a basis of $\Fun(S, V)$ for an arbitrary finite set $S$. What is the dimension of $\Fun(S, V)$?

(f) Let $W \subseteq V$ be a subspace. Prove that $\Fun(S, W)$ is a subspace of $\Fun(S, V)$.

## Problem 606

Let $V$ be a vector space and $B$ be a basis for $V$.
Let $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ be vectors in $V$.
Suppose that $A$ is the matrix whose columns are the coordinate vectors of $\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5$ with respect to the basis $B$.

After applying the elementary row operations to $A$, we obtain the following matrix in reduced row echelon form
$\begin{bmatrix} 1 & 0 & 2 & 1 & 0 \\ 0 & 1 & 3 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$

(a) What is the dimension of $V$?

(b) What is the dimension of $\Span\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3, \mathbf{w}_4, \mathbf{w}_5\}$?

(The Ohio State University, Linear Algebra Midterm)

## Problem 601

Let $V$ be the vector space of all $2\times 2$ matrices whose entries are real numbers.
Let
$W=\left\{\, A\in V \quad \middle | \quad A=\begin{bmatrix} a & b\\ c& -a \end{bmatrix} \text{ for any } a, b, c\in \R \,\right\}.$

(a) Show that $W$ is a subspace of $V$.

(b) Find a basis of $W$.

(c) Find the dimension of $W$.

(The Ohio State University, Linear Algebra Midterm)

## Problem 586

Let $V$ be the vector space over $\R$ of all real $2\times 2$ matrices.
Let $W$ be the subset of $V$ consisting of all symmetric matrices.

(a) Prove that $W$ is a subspace of $V$.

(b) Find a basis of $W$.

(c) Determine the dimension of $W$.

## Problem 578

Let $V$ be a subset of $\R^4$ consisting of vectors that are perpendicular to vectors $\mathbf{a}, \mathbf{b}$ and $\mathbf{c}$, where
$\mathbf{a}=\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{b}=\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad \mathbf{c}=\begin{bmatrix} 0 \\ 1 \\ -1 \\ 0 \end{bmatrix}.$

Namely,
$V=\{\mathbf{x}\in \R^4 \mid \mathbf{a}^{\trans}\mathbf{x}=0, \mathbf{b}^{\trans}\mathbf{x}=0, \text{ and } \mathbf{c}^{\trans}\mathbf{x}=0\}.$

(a) Prove that $V$ is a subspace of $\R^4$.

(b) Find a basis of $V$.

(c) Determine the dimension of $V$.

## Problem 440

Let $U$ and $V$ be finite dimensional subspaces in a vector space over a scalar field $K$.
Then prove that
$\dim(U+V) \leq \dim(U)+\dim(V).$

## Problem 270

Let
$A=\begin{bmatrix} 4 & 1\\ 3& 2 \end{bmatrix}$ and consider the following subset $V$ of the 2-dimensional vector space $\R^2$.
$V=\{\mathbf{x}\in \R^2 \mid A\mathbf{x}=5\mathbf{x}\}.$

(a) Prove that the subset $V$ is a subspace of $\R^2$.

(b) Find a basis for $V$ and determine the dimension of $V$.

## Problem 253

Determine whether the following is true or false. If it is true, then give a proof. If it is false, then give a counterexample.

Let $W_1$ and $W_2$ be subspaces of the vector space $\R^n$.
If $B_1$ and $B_2$ are bases for $W_1$ and $W_2$, respectively, then $B_1\cap B_2$ is a basis of the subspace $W_1\cap W_2$.

## Problem 242

Let
$A=\begin{bmatrix} 1 & 2 & 2 \\ 2 &3 &2 \\ -1 & -3 & -4 \end{bmatrix} \text{ and } B=\begin{bmatrix} 1 & 2 & 2 \\ 2 &3 &2 \\ 5 & 3 & 3 \end{bmatrix}.$

Determine the null spaces of matrices $A$ and $B$.

## Problem 182

Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$.
Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$.

Show that the vectors $\mathbf{x}, T\mathbf{x}, T^2\mathbf{x}$ form a basis for $\R^3$.

(The Ohio State University Linear Algebra Exam Problem)

## Problem 152

Let $V$ be the vector space of all $2\times 2$ matrices, and let the subset $S$ of $V$ be defined by $S=\{A_1, A_2, A_3, A_4\}$, where
\begin{align*}
A_1=\begin{bmatrix}
1 & 2 \\
-1 & 3
A_2=\begin{bmatrix}
0 & -1 \\
1 & 4
A_3=\begin{bmatrix}
-1 & 0 \\
1 & -10
A_4=\begin{bmatrix}
3 & 7 \\
-2 & 6
\end{bmatrix}.
\end{align*}
Find a basis of the span $\Span(S)$ consisting of vectors in $S$ and find the dimension of $\Span(S)$.

## Problem 150

Show that the set
$S=\{1, 1-x, 3+4x+x^2\}$ is a basis of the vector space $P_2$ of all polynomials of degree $2$ or less.

## Problem 140

Let $A$ be an $m\times n$ matrix. The nullspace of $A$ is denoted by $\calN(A)$.
The dimension of the nullspace of $A$ is called the nullity of $A$.
Prove the followings.

(a) $\calN(A)=\calN(A^{\trans}A)$.

(b) $\rk(A)=\rk(A^{\trans}A)$.

## Problem 137

Let $P_n(\R)$ be the vector space over $\R$ consisting of all degree $n$ or less real coefficient polynomials. Let
$U=\{ p(x) \in P_n(\R) \mid p(1)=0\}$ be a subspace of $P_n(\R)$.

Find a basis for $U$ and determine the dimension of $U$.

## Problem 135

Let $A$ be an $m \times n$ matrix and $B$ be an $n \times l$ matrix. Then prove the followings.

(a) $\rk(AB) \leq \rk(A)$.

(b) If the matrix $B$ is nonsingular, then $\rk(AB)=\rk(A)$.

## Problem 131

Let $V$ be the following subspace of the $4$-dimensional vector space $\R^4$.
$V:=\left\{ \quad\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \R^4 \quad \middle| \quad x_1-x_2+x_3-x_4=0 \quad\right\}.$ Find a basis of the subspace $V$ and its dimension.