True or False Quiz About a System of Linear Equations
(Purdue University Linear Algebra Exam)
Which of the following statements are true?
(a) A linear system of four equations in three unknowns is always inconsistent.
(b) A linear system with fewer equations than unknowns must have infinitely many solutions.
(c) […]
Is there an Odd Matrix Whose Square is $-I$?
Let $n$ be an odd positive integer.
Determine whether there exists an $n \times n$ real matrix $A$ such that
\[A^2+I=O,\]
where $I$ is the $n \times n$ identity matrix and $O$ is the $n \times n$ zero matrix.
If such a matrix $A$ exists, find an example. If not, prove that […]
If the Quotient by the Center is Cyclic, then the Group is Abelian
Let $Z(G)$ be the center of a group $G$.
Show that if $G/Z(G)$ is a cyclic group, then $G$ is abelian.
Steps.
Write $G/Z(G)=\langle \bar{g} \rangle$ for some $g \in G$.
Any element $x\in G$ can be written as $x=g^a z$ for some $z \in Z(G)$ and $a \in \Z$.
Using […]
A Matrix Equation of a Symmetric Matrix and the Limit of its Solution
Let $A$ be a real symmetric $n\times n$ matrix with $0$ as a simple eigenvalue (that is, the algebraic multiplicity of the eigenvalue $0$ is $1$), and let us fix a vector $\mathbf{v}\in \R^n$.
(a) Prove that for sufficiently small positive real $\epsilon$, the equation […]
Ring is a Filed if and only if the Zero Ideal is a Maximal Ideal
Let $R$ be a commutative ring.
Then prove that $R$ is a field if and only if $\{0\}$ is a maximal ideal of $R$.
Proof.
$(\implies)$: If $R$ is a field, then $\{0\}$ is a maximal ideal
Suppose that $R$ is a field and let $I$ be a non zero ideal:
\[ \{0\} […]
$x^3-\sqrt{2}$ is Irreducible Over the Field $\Q(\sqrt{2})$
Show that the polynomial $x^3-\sqrt{2}$ is irreducible over the field $\Q(\sqrt{2})$.
Hint.
Consider the field extensions $\Q(\sqrt{2})$ and $\Q(\sqrt[6]{2})$.
Proof.
Let $\sqrt[6]{2}$ denote the positive real $6$-th root of of $2$.
Then since $x^6-2$ is […]
Pick Two Balls from a Box, What is the Probability Both are Red?
There are three blue balls and two red balls in a box.
When we randomly pick two balls out of the box without replacement, what is the probability that both of the balls are red?
Solution.
Let $R_1$ be the event that the first ball is red and $R_2$ be the event that the […]