squareroot-of-matrix

squareroot-of-matrix

LoadingAdd to solve later

Sponsored Links

Square Roots of a Matrix Problems and Solutions


LoadingAdd to solve later

Sponsored Links

More from my site

  • True or False Quiz About a System of Linear EquationsTrue or False Quiz About a System of Linear Equations (Purdue University Linear Algebra Exam)   Which of the following statements are true? (a) A linear system of four equations in three unknowns is always inconsistent. (b) A linear system with fewer equations than unknowns must have infinitely many solutions. (c) […]
  • Is there an Odd Matrix Whose Square is $-I$?Is there an Odd Matrix Whose Square is $-I$? Let $n$ be an odd positive integer. Determine whether there exists an $n \times n$ real matrix $A$ such that \[A^2+I=O,\] where $I$ is the $n \times n$ identity matrix and $O$ is the $n \times n$ zero matrix. If such a matrix $A$ exists, find an example. If not, prove that […]
  • If the Quotient by the Center is Cyclic, then the Group is AbelianIf the Quotient by the Center is Cyclic, then the Group is Abelian Let $Z(G)$ be the center of a group $G$. Show that if $G/Z(G)$ is a cyclic group, then $G$ is abelian. Steps. Write $G/Z(G)=\langle \bar{g} \rangle$ for some $g \in G$. Any element $x\in G$ can be written as $x=g^a z$ for some $z \in Z(G)$ and $a \in \Z$. Using […]
  • A Matrix Equation of a Symmetric Matrix and the Limit of its SolutionA Matrix Equation of a Symmetric Matrix and the Limit of its Solution Let $A$ be a real symmetric $n\times n$ matrix with $0$ as a simple eigenvalue (that is, the algebraic multiplicity of the eigenvalue $0$ is $1$), and let us fix a vector $\mathbf{v}\in \R^n$. (a) Prove that for sufficiently small positive real $\epsilon$, the equation […]
  • Use Coordinate Vectors to Show a Set is a Basis for the Vector Space of Polynomials of Degree 2 or LessUse Coordinate Vectors to Show a Set is a Basis for the Vector Space of Polynomials of Degree 2 or Less Let $P_2$ be the vector space over $\R$ of all polynomials of degree $2$ or less. Let $S=\{p_1(x), p_2(x), p_3(x)\}$, where \[p_1(x)=x^2+1, \quad p_2(x)=6x^2+x+2, \quad p_3(x)=3x^2+x.\] (a) Use the basis $B=\{x^2, x, 1\}$ of $P_2$ to prove that the set $S$ is a basis for […]
  • Ring is a Filed if and only if the Zero Ideal is a Maximal IdealRing is a Filed if and only if the Zero Ideal is a Maximal Ideal Let $R$ be a commutative ring. Then prove that $R$ is a field if and only if $\{0\}$ is a maximal ideal of $R$.   Proof. $(\implies)$: If $R$ is a field, then $\{0\}$ is a maximal ideal Suppose that $R$ is a field and let $I$ be a non zero ideal: \[ \{0\} […]
  • $x^3-\sqrt{2}$ is Irreducible Over the Field $\Q(\sqrt{2})$$x^3-\sqrt{2}$ is Irreducible Over the Field $\Q(\sqrt{2})$ Show that the polynomial $x^3-\sqrt{2}$ is irreducible over the field $\Q(\sqrt{2})$.   Hint. Consider the field extensions $\Q(\sqrt{2})$ and $\Q(\sqrt[6]{2})$. Proof. Let $\sqrt[6]{2}$ denote the positive real $6$-th root of of $2$. Then since $x^6-2$ is […]
  • Pick Two Balls from a Box, What is the Probability Both are Red?Pick Two Balls from a Box, What is the Probability Both are Red? There are three blue balls and two red balls in a box. When we randomly pick two balls out of the box without replacement, what is the probability that both of the balls are red? Solution. Let $R_1$ be the event that the first ball is red and $R_2$ be the event that the […]

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.