Let $p\in \Z$ be a prime number and let $\F_p$ be the field of $p$ elements.
For any nonzero element $a\in \F_p$, prove that the polynomial
\[f(x)=x^p-x+a\]
is irreducible and separable over $F_p$.
(Dummit and Foote “Abstract Algebra” Section 13.5 Exercise #5 on p.551)
Use Lagrange’s Theorem in the multiplicative group $(\Zmod{p})^{\times}$ to prove Fermat’s Little Theorem: if $p$ is a prime number then $a^p \equiv a \pmod p$ for all $a \in \Z$.