# Tagged: idempotent

## Problem 618

Let $R$ be a commutative ring with $1$ such that every element $x$ in $R$ is idempotent, that is, $x^2=x$. (Such a ring is called a Boolean ring.)

(a) Prove that $x^n=x$ for any positive integer $n$.

(b) Prove that $R$ does not have a nonzero nilpotent element.

## Problem 617

Let $R$ be a commutative ring with $1$.
Suppose that the localization $R_{\mathfrak{p}}$ is a Noetherian ring for every prime ideal $\mathfrak{p}$ of $R$.
Is it true that $A$ is also a Noetherian ring?

## Problem 543

Let $R$ be a ring with $1$.
Suppose that $a, b$ are elements in $R$ such that
$ab=1 \text{ and } ba\neq 1.$

(a) Prove that $1-ba$ is idempotent.

(b) Prove that $b^n(1-ba)$ is nilpotent for each positive integer $n$.

(c) Prove that the ring $R$ has infinitely many nilpotent elements.

## Problem 527

A square matrix $A$ is called idempotent if $A^2=A$.

(a) Let $\mathbf{u}$ be a vector in $\R^n$ with length $1$.
Define the matrix $P$ to be $P=\mathbf{u}\mathbf{u}^{\trans}$.

Prove that $P$ is an idempotent matrix.

(b) Suppose that $\mathbf{u}$ and $\mathbf{v}$ be unit vectors in $\R^n$ such that $\mathbf{u}$ and $\mathbf{v}$ are orthogonal.
Let $Q=\mathbf{u}\mathbf{u}^{\trans}+\mathbf{v}\mathbf{v}^{\trans}$.

Prove that $Q$ is an idempotent matrix.

(c) Prove that each nonzero vector of the form $a\mathbf{u}+b\mathbf{v}$ for some $a, b\in \R$ is an eigenvector corresponding to the eigenvalue $1$ for the matrix $Q$ in part (b).

## Problem 447

Let $A$ be a square matrix such that
$A^{\trans}A=A,$ where $A^{\trans}$ is the transpose matrix of $A$.
Prove that $A$ is idempotent, that is, $A^2=A$. Also, prove that $A$ is a symmetric matrix.

## Problem 429

Let $A$ be an $n\times n$ idempotent matrix, that is, $A^2=A$. Then prove that $A$ is diagonalizable.

## Problem 426

A square matrix $A$ is called idempotent if $A^2=A$.

(a) Suppose $A$ is an $n \times n$ idempotent matrix and let $I$ be the $n\times n$ identity matrix. Prove that the matrix $I-A$ is an idempotent matrix.

(b) Assume that $A$ is an $n\times n$ nonzero idempotent matrix. Then determine all integers $k$ such that the matrix $I-kA$ is idempotent.

(c) Let $A$ and $B$ be $n\times n$ matrices satisfying
$AB=A \text{ and } BA=B.$ Then prove that $A$ is an idempotent matrix.

## Problem 377

Let $A$ be an $n\times n$ idempotent complex matrix.
Then prove that $A$ is diagonalizable.

## Problem 327

Let $A$ be the matrix for a linear transformation $T:\R^n \to \R^n$ with respect to the standard basis of $\R^n$.
We assume that $A$ is idempotent, that is, $A^2=A$.
Then prove that
$\R^n=\im(T) \oplus \ker(T).$

## Problem 265

For a real number $a$, consider $2\times 2$ matrices $A, P, Q$ satisfying the following five conditions.

1. $A=aP+(a+1)Q$
2. $P^2=P$
3. $Q^2=Q$
4. $PQ=O$
5. $QP=O$,

where $O$ is the $2\times 2$ zero matrix.
Then do the following problems.

(a) Prove that $(P+Q)A=A$.

(b) Suppose $a$ is a positive real number and let
$A=\begin{bmatrix} a & 0\\ 1& a+1 \end{bmatrix}.$ Then find all matrices $P, Q$ satisfying conditions (1)-(5).

(c) Let $n$ be an integer greater than $1$. For any integer $k$, $2\leq k \leq n$, we define the matrix
$A_k=\begin{bmatrix} k & 0\\ 1& k+1 \end{bmatrix}.$ Then calculate and simplify the matrix product
$A_nA_{n-1}A_{n-2}\cdots A_2.$

(Tokyo University Entrance Exam 2007)

## Problem 180

Suppose the following information is known about a $3\times 3$ matrix $A$.
$A\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=6\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}=3\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}=3\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$

(a) Find the eigenvalues of $A$.

(b) Find the corresponding eigenspaces.

(c) In each of the following questions, you must give a correct reason (based on the theory of eigenvalues and eigenvectors) to get full credit.
Is $A$ a diagonalizable matrix?
Is $A$ an invertible matrix?
Is $A$ an idempotent matrix?

(Johns Hopkins University Linear Algebra Exam)

## Problem 176

Let $A$ be an $n \times n$ matrix. We say that $A$ is idempotent if $A^2=A$.

(a) Find a nonzero, nonidentity idempotent matrix.

(b) Show that eigenvalues of an idempotent matrix $A$ is either $0$ or $1$.

(The Ohio State University, Linear Algebra Final Exam Problem)

A square matrix $A$ is called idempotent if $A^2=A$.