# Tagged: injective homomorphism

## Problem 443

Let $A=B=\Z$ be the additive group of integers.
Define a map $\phi: A\to B$ by sending $n$ to $2n$ for any integer $n\in A$.

(a) Prove that $\phi$ is a group homomorphism.

(b) Prove that $\phi$ is injective.

(c) Prove that there does not exist a group homomorphism $\psi:B \to A$ such that $\psi \circ \phi=\id_A$.

## Problem 322

Let $\R=(\R, +)$ be the additive group of real numbers and let $\R^{\times}=(\R\setminus\{0\}, \cdot)$ be the multiplicative group of real numbers.

(a) Prove that the map $\exp:\R \to \R^{\times}$ defined by
$\exp(x)=e^x$ is an injective group homomorphism.

(b) Prove that the additive group $\R$ is isomorphic to the multiplicative group
$\R^{+}=\{x \in \R \mid x > 0\}.$

## Problem 243

Let $f:G\to G’$ be a group homomorphism. We say that $f$ is monic whenever we have $fg_1=fg_2$, where $g_1:K\to G$ and $g_2:K \to G$ are group homomorphisms for some group $K$, we have $g_1=g_2$.

Then prove that a group homomorphism $f: G \to G’$ is injective if and only if it is monic.

## Problem 144

Let $G$ and $H$ be groups and let $f:G \to K$ be a group homomorphism. Prove that the homomorphism $f$ is injective if and only if the kernel is trivial, that is, $\ker(f)=\{e\}$, where $e$ is the identity element of $G$.

## Problem 52

Let $n$ be a positive integer. Let $D_{2n}$ be the dihedral group of order $2n$. Using the generators and the relations, the dihedral group $D_{2n}$ is given by
$D_{2n}=\langle r,s \mid r^n=s^2=1, sr=r^{-1}s\rangle.$ Put $\theta=2 \pi/n$.

(a) Prove that the matrix $\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix}$ is the matrix representation of the linear transformation $T$ which rotates the $x$-$y$ plane about the origin in a counterclockwise direction by $\theta$ radians.

(b) Let $\GL_2(\R)$ be the group of all $2 \times 2$ invertible matrices with real entries. Show that the map $\rho: D_{2n} \to \GL_2(\R)$ defined on the generators by
$\rho(r)=\begin{bmatrix} \cos \theta & -\sin \theta\\ \sin \theta& \cos \theta \end{bmatrix} \text{ and } \rho(s)=\begin{bmatrix} 0 & 1\\ 1& 0 \end{bmatrix}$ extends to a homomorphism of $D_{2n}$ into $\GL_2(\R)$.

(c) Determine whether the homomorphism $\rho$ in part (b) is injective and/or surjective.

## Problem 38

Let $A$ be an $m \times n$ real matrix.
Then the kernel of $A$ is defined as $\ker(A)=\{ x\in \R^n \mid Ax=0 \}$.

The kernel is also called the null space of $A$.
Suppose that $A$ is an $m \times n$ real matrix such that $\ker(A)=0$. Prove that $A^{\trans}A$ is invertible.

(Stanford University Linear Algebra Exam)

## Problem 4

Let $G$ and $G’$ be a group and let $\phi:G \to G’$ be a group homomorphism.

Show that $\phi$ induces an injective homomorphism from $G/\ker{\phi} \to G’$.