# Tagged: Stanford

## Problem 438

Determine whether each of the following statements is True or False.

(a) If $A$ and $B$ are $n \times n$ matrices, and $P$ is an invertible $n \times n$ matrix such that $A=PBP^{-1}$, then $\det(A)=\det(B)$.

(b) If the characteristic polynomial of an $n \times n$ matrix $A$ is
$p(\lambda)=(\lambda-1)^n+2,$ then $A$ is invertible.

(c) If $A^2$ is an invertible $n\times n$ matrix, then $A^3$ is also invertible.

(d) If $A$ is a $3\times 3$ matrix such that $\det(A)=7$, then $\det(2A^{\trans}A^{-1})=2$.

(e) If $\mathbf{v}$ is an eigenvector of an $n \times n$ matrix $A$ with corresponding eigenvalue $\lambda_1$, and if $\mathbf{w}$ is an eigenvector of $A$ with corresponding eigenvalue $\lambda_2$, then $\mathbf{v}+\mathbf{w}$ is an eigenvector of $A$ with corresponding eigenvalue $\lambda_1+\lambda_2$.

(Stanford University, Linear Algebra Exam Problem)

## Problem 216

Let
$A=\begin{bmatrix} 1 & 3 & 3 \\ -3 &-5 &-3 \\ 3 & 3 & 1 \end{bmatrix} \text{ and } B=\begin{bmatrix} 2 & 4 & 3 \\ -4 &-6 &-3 \\ 3 & 3 & 1 \end{bmatrix}.$ For this problem, you may use the fact that both matrices have the same characteristic polynomial:
$p_A(\lambda)=p_B(\lambda)=-(\lambda-1)(\lambda+2)^2.$

(a) Find all eigenvectors of $A$.

(b) Find all eigenvectors of $B$.

(c) Which matrix $A$ or $B$ is diagonalizable?

(d) Diagonalize the matrix stated in (c), i.e., find an invertible matrix $P$ and a diagonal matrix $D$ such that $A=PDP^{-1}$ or $B=PDP^{-1}$.

(Stanford University Linear Algebra Final Exam Problem)

## Problem 181

Suppose that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$.
Compute $A^2\begin{bmatrix} 4 \\ 3 \end{bmatrix}$.

(Stanford University Linear Algebra Exam Problem)

## Problem 70

Suppose that $A$ is an $n \times n$ matrix with eigenvalue $\lambda$ and corresponding eigenvector $\mathbf{v}$.

(a) If $A$ is invertible, is $\mathbf{v}$ an eigenvector of $A^{-1}$? If so, what is the corresponding eigenvalue? If not, explain why not.

(b) Is $3\mathbf{v}$ an eigenvector of $A$? If so, what is the corresponding eigenvalue? If not, explain why not.

(Stanford University, Linear Algebra Exam)

## Problem 39

Suppose that $A$ is a diagonalizable matrix with characteristic polynomial
$f_A(\lambda)=\lambda^2(\lambda-3)(\lambda+2)^3(\lambda-4)^3.$

(a) Find the size of the matrix $A$.

(b) Find the dimension of $E_4$, the eigenspace corresponding to the eigenvalue $\lambda=4$.

(c) Find the dimension of the kernel(nullspace) of $A$.

(Stanford University Linear Algebra Exam)

## Problem 38

Let $A$ be an $m \times n$ real matrix.
Then the kernel of $A$ is defined as $\ker(A)=\{ x\in \R^n \mid Ax=0 \}$.

The kernel is also called the null space of $A$.
Suppose that $A$ is an $m \times n$ real matrix such that $\ker(A)=0$. Prove that $A^{\trans}A$ is invertible.

(Stanford University Linear Algebra Exam)

## Problem 37

Suppose that $A$ is a diagonalizable $n\times n$ matrix and has only $1$ and $-1$ as eigenvalues.
Show that $A^2=I_n$, where $I_n$ is the $n\times n$ identity matrix.

(Stanford University Linear Algebra Exam)

See below for a generalized problem.