Is the Set of All Orthogonal Matrices a Vector Space?
Problem 611
An $n\times n$ matrix $A$ is called orthogonal if $A^{\trans}A=I$.
Let $V$ be the vector space of all real $2\times 2$ matrices.
Consider the subset
\[W:=\{A\in V \mid \text{$A$ is an orthogonal matrix}\}.\]
Prove or disprove that $W$ is a subspace of $V$.
Add to solve later