Nagoya-university-eye-catch

LoadingAdd to solve later

Nagoya University Linear Algebra Exam Problems and Solutions


LoadingAdd to solve later

More from my site

  • There is at Least One Real Eigenvalue of an Odd Real MatrixThere is at Least One Real Eigenvalue of an Odd Real Matrix Let $n$ be an odd integer and let $A$ be an $n\times n$ real matrix. Prove that the matrix $A$ has at least one real eigenvalue.   We give two proofs. Proof 1. Let $p(t)=\det(A-tI)$ be the characteristic polynomial of the matrix $A$. It is a degree $n$ […]
  • A Recursive Relationship for a Power of a MatrixA Recursive Relationship for a Power of a Matrix Suppose that the $2 \times 2$ matrix $A$ has eigenvalues $4$ and $-2$. For each integer $n \geq 1$, there are real numbers $b_n , c_n$ which satisfy the relation \[ A^{n} = b_n A + c_n I , \] where $I$ is the identity matrix. Find $b_n$ and $c_n$ for $2 \leq n \leq 5$, and […]
  • Find a Formula for a Linear TransformationFind a Formula for a Linear Transformation If $L:\R^2 \to \R^3$ is a linear transformation such that \begin{align*} L\left( \begin{bmatrix} 1 \\ 0 \end{bmatrix}\right) =\begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}, \,\,\,\, L\left( \begin{bmatrix} 1 \\ 1 \end{bmatrix}\right) =\begin{bmatrix} 2 \\ 3 […]
  • The Subspace of Linear Combinations whose Sums of Coefficients are zeroThe Subspace of Linear Combinations whose Sums of Coefficients are zero Let $V$ be a vector space over a scalar field $K$. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ be vectors in $V$ and consider the subset \[W=\{a_1\mathbf{v}_1+a_2\mathbf{v}_2+\cdots+ a_k\mathbf{v}_k \mid a_1, a_2, \dots, a_k \in K \text{ and } […]
  • Is an Eigenvector of a Matrix an Eigenvector of its Inverse?Is an Eigenvector of a Matrix an Eigenvector of its Inverse? Suppose that $A$ is an $n \times n$ matrix with eigenvalue $\lambda$ and corresponding eigenvector $\mathbf{v}$. (a) If $A$ is invertible, is $\mathbf{v}$ an eigenvector of $A^{-1}$? If so, what is the corresponding eigenvalue? If not, explain why not. (b) Is $3\mathbf{v}$ an […]
  • A Homomorphism from the Additive Group of Integers to ItselfA Homomorphism from the Additive Group of Integers to Itself Let $\Z$ be the additive group of integers. Let $f: \Z \to \Z$ be a group homomorphism. Then show that there exists an integer $a$ such that \[f(n)=an\] for any integer $n$.   Hint. Let us first recall the definition of a group homomorphism. A group homomorphism from a […]
  • The Center of the Heisenberg Group Over a Field $F$ is Isomorphic to the Additive Group $F$The Center of the Heisenberg Group Over a Field $F$ is Isomorphic to the Additive Group $F$ Let $F$ be a field and let \[H(F)=\left\{\, \begin{bmatrix} 1 & a & b \\ 0 &1 &c \\ 0 & 0 & 1 \end{bmatrix} \quad \middle| \quad \text{ for any} a,b,c\in F\, \right\}\] be the Heisenberg group over $F$. (The group operation of the Heisenberg group is matrix […]
  • Given the Data of Eigenvalues, Determine if the Matrix is InvertibleGiven the Data of Eigenvalues, Determine if the Matrix is Invertible In each of the following cases, can we conclude that $A$ is invertible? If so, find an expression for $A^{-1}$ as a linear combination of positive powers of $A$. If $A$ is not invertible, explain why not. (a) The matrix $A$ is a $3 \times 3$ matrix with eigenvalues $\lambda=i , […]

Leave a Reply

Your email address will not be published. Required fields are marked *