## Problem 198

Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain.

Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a field.

## Problem 197

Let $R$ be a ring with unit $1\neq 0$.

Prove that if $M$ is an ideal of $R$ such that $R/M$ is a field, then $M$ is a maximal ideal of $R$.
(Do not assume that the ring $R$ is commutative.)

## Problem 196

Let $G$ be a group. Assume that $H$ and $K$ are both normal subgroups of $G$ and $H \cap K=1$. Then for any elements $h \in H$ and $k\in K$, show that $hk=kh$.

## Problem 195

Let $G$ be a group and let $A$ be an abelian subgroup of $G$ with $A \triangleleft G$.
(That is, $A$ is a normal subgroup of $G$.)

If $B$ is any subgroup of $G$, then show that
$A \cap B \triangleleft AB.$

## Problem 194

Find the value(s) of $h$ for which the following set of vectors
$\left \{ \mathbf{v}_1=\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \mathbf{v}_2=\begin{bmatrix} h \\ 1 \\ -h \end{bmatrix}, \mathbf{v}_3=\begin{bmatrix} 1 \\ 2h \\ 3h+1 \end{bmatrix}\right\}$ is linearly independent.

(Boston College, Linear Algebra Midterm Exam Sample Problem)

## Problem 193

Let $A$ be a $3 \times 3$ matrix.
Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have
$A\mathbf{x}=\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, A\mathbf{y}=\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, A\mathbf{z}=\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$

Then find the value of the determinant of the matrix $A$.

## Problem 192

Show that any finite integral domain $R$ is a field.

## Problem 191

Let
$A=\begin{bmatrix} 1 & -1\\ 2& 3 \end{bmatrix}.$

Find the eigenvalues and the eigenvectors of the matrix
$B=A^4-3A^3+3A^2-2A+8E.$

(Nagoya University Linear Algebra Exam Problem)

## Problem 190

Prove that the matrix
$A=\begin{bmatrix} 1 & 1.00001 & 1 \\ 1.00001 &1 &1.00001 \\ 1 & 1.00001 & 1 \end{bmatrix}$ has one positive eigenvalue and one negative eigenvalue.

(University of California, Berkeley Qualifying Exam Problem)

## Problem 189

Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces
$E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 \end{bmatrix},\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 2 \end{bmatrix} \quad\right\}.$

Calculate $C^4 \mathbf{u}$ for $\mathbf{u}=\begin{bmatrix} 6 \\ 8 \\ 6 \\ 9 \end{bmatrix}$ if possible. Explain why if it is not possible!

(The Ohio State University Linear Algebra Exam Problem)

## Problem 188

Denote by $i$ the square root of $-1$.
Let
$R=\Z[i]=\{a+ib \mid a, b \in \Z \}$ be the ring of Gaussian integers.
We define the norm $N:\Z[i] \to \Z$ by sending $\alpha=a+ib$ to
$N(\alpha)=\alpha \bar{\alpha}=a^2+b^2.$

Here $\bar{\alpha}$ is the complex conjugate of $\alpha$.
Then show that an element $\alpha \in R$ is a unit if and only if the norm $N(\alpha)=\pm 1$.
Also, determine all the units of the ring $R=\Z[i]$ of Gaussian integers.

## Problem 187

Let $A$ be an $n\times n$ matrix. Suppose that $\lambda_1, \lambda_2$ are distinct eigenvalues of the matrix $A$ and let $\mathbf{v}_1, \mathbf{v}_2$ be eigenvectors corresponding to $\lambda_1, \lambda_2$, respectively.

Show that the vectors $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent.

## Problem 186

Let $A$ and $B$ be $n\times n$ matrices, where $n$ is an integer greater than $1$.

Is it true that
$\det(A+B)=\det(A)+\det(B)?$ If so, then give a proof. If not, then give a counterexample.

## Problem 185

Let $A=(a_{ij})$ be an $n \times n$ matrix.
We say that $A=(a_{ij})$ is a right stochastic matrix if each entry $a_{ij}$ is nonnegative and the sum of the entries of each row is $1$. That is, we have
$a_{ij}\geq 0 \quad \text{ and } \quad a_{i1}+a_{i2}+\cdots+a_{in}=1$ for $1 \leq i, j \leq n$.

Let $A=(a_{ij})$ be an $n\times n$ right stochastic matrix. Then show the following statements.

(a)The stochastic matrix $A$ has an eigenvalue $1$.

(b) The absolute value of any eigenvalue of the stochastic matrix $A$ is less than or equal to $1$.

## Problem 184

Suppose that $A$ and $P$ are $3 \times 3$ matrices and $P$ is invertible matrix.
If
$P^{-1}AP=\begin{bmatrix} 1 & 2 & 3 \\ 0 &4 &5 \\ 0 & 0 & 6 \end{bmatrix},$ then find all the eigenvalues of the matrix $A^2$.

## Problem 183

Let $A$ be an $n \times n$ matrix. Suppose that the matrix $A^2$ has a real eigenvalue $\lambda>0$. Then show that either $\sqrt{\lambda}$ or $-\sqrt{\lambda}$ is an eigenvalue of the matrix $A$.

## Problem 182

Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$.
Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$.

Show that the vectors $\mathbf{x}, T\mathbf{x}, T^2\mathbf{x}$ form a basis for $\R^3$.

(The Ohio State University Linear Algebra Exam Problem)

## Problem 181

Suppose that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$.
Compute $A^2\begin{bmatrix} 4 \\ 3 \end{bmatrix}$.

(Stanford University Linear Algebra Exam Problem)

## Problem 180

Suppose the following information is known about a $3\times 3$ matrix $A$.
$A\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=6\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}=3\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}, \quad A\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}=3\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}.$

(a) Find the eigenvalues of $A$.

(b) Find the corresponding eigenspaces.

(c) In each of the following questions, you must give a correct reason (based on the theory of eigenvalues and eigenvectors) to get full credit.
Is $A$ a diagonalizable matrix?
Is $A$ an invertible matrix?
Is $A$ an idempotent matrix?

(Johns Hopkins University Linear Algebra Exam)

## $\sqrt[m]{2}$ is an Irrational Number
Prove that $\sqrt[m]{2}$ is an irrational number for any integer $m \geq 2$.