Tagged: homomorphism

Isomorphism Criterion of Semidirect Product of Groups

Problem 113

Let $A$, $B$ be groups. Let $\phi:B \to \Aut(A)$ be a group homomorphism.
The semidirect product $A \rtimes_{\phi} B$ with respect to $\phi$ is a group whose underlying set is $A \times B$ with group operation
\[(a_1, b_1)\cdot (a_2, b_2)=(a_1\phi(b_1)(a_2), b_1b_2),\] where $a_i \in A, b_i \in B$ for $i=1, 2$.

Let $f: A \to A’$ and $g:B \to B’$ be group isomorphisms. Define $\phi’: B’\to \Aut(A’)$ by sending $b’ \in B’$ to $f\circ \phi(g^{-1}(b’))\circ f^{-1}$.

\[\require{AMScd}
\begin{CD}
B @>{\phi}>> \Aut(A)\\
@A{g^{-1}}AA @VV{\sigma_f}V \\
B’ @>{\phi’}>> \Aut(A’)
\end{CD}\] Here $\sigma_f:\Aut(A) \to \Aut(A’)$ is defined by $ \alpha \in \Aut(A) \mapsto f\alpha f^{-1}\in \Aut(A’)$.
Then show that
\[A \rtimes_{\phi} B \cong A’ \rtimes_{\phi’} B’.\]

 
Read solution

LoadingAdd to solve later

Dihedral Group and Rotation of the Plane

Problem 52

Let $n$ be a positive integer. Let $D_{2n}$ be the dihedral group of order $2n$. Using the generators and the relations, the dihedral group $D_{2n}$ is given by
\[D_{2n}=\langle r,s \mid r^n=s^2=1, sr=r^{-1}s\rangle.\] Put $\theta=2 \pi/n$.


(a) Prove that the matrix $\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta
\end{bmatrix}$ is the matrix representation of the linear transformation $T$ which rotates the $x$-$y$ plane about the origin in a counterclockwise direction by $\theta$ radians.


(b) Let $\GL_2(\R)$ be the group of all $2 \times 2$ invertible matrices with real entries. Show that the map $\rho: D_{2n} \to \GL_2(\R)$ defined on the generators by
\[ \rho(r)=\begin{bmatrix}
\cos \theta & -\sin \theta\\
\sin \theta& \cos \theta
\end{bmatrix} \text{ and }
\rho(s)=\begin{bmatrix}
0 & 1\\
1& 0
\end{bmatrix}\] extends to a homomorphism of $D_{2n}$ into $\GL_2(\R)$.


(c) Determine whether the homomorphism $\rho$ in part (b) is injective and/or surjective.

Read solution

LoadingAdd to solve later

If the Kernel of a Matrix $A$ is Trivial, then $A^T A$ is Invertible

Problem 38

Let $A$ be an $m \times n$ real matrix.
Then the kernel of $A$ is defined as $\ker(A)=\{ x\in \R^n \mid Ax=0 \}$.

The kernel is also called the null space of $A$.
Suppose that $A$ is an $m \times n$ real matrix such that $\ker(A)=0$. Prove that $A^{\trans}A$ is invertible.

(Stanford University Linear Algebra Exam)

Read solution

LoadingAdd to solve later

Basic Properties of Characteristic Groups

Problem 22

Definition (automorphism).

An isomorphism from a group $G$ to itself is called an automorphism of $G$.
The set of all automorphism is denoted by $\Aut(G)$.

Definition (characteristic subgroup).

A subgroup $H$ of a group $G$ is called characteristic in $G$ if for any $\phi \in \Aut(G)$, we have $\phi(H)=H$. In words, this means that each automorphism of $G$ maps $H$ to itself.

Prove the followings.

(a) If $H$ is characteristic in $G$, then $H$ is a normal subgroup of $G$.

(b) If $H$ is the unique subgroup of $G$ of a given order, then $H$ is characteristic in $G$.

(c) Suppose that a subgroup $K$ is characteristic in a group $H$ and $H$ is a normal subgroup of $G$. Then $K$ is a normal subgroup in $G$.

 
Read solution

LoadingAdd to solve later