The Inverse Matrix is Unique
Problem 251
Let $A$ be an $n\times n$ invertible matrix. Prove that the inverse matrix of $A$ is uniques.
Add to solve later Let $A$ be an $n\times n$ invertible matrix. Prove that the inverse matrix of $A$ is uniques.
Add to solve later Let $\mathbf{u}$ and $\mathbf{v}$ be vectors in $\R^n$, and let $I$ be the $n \times n$ identity matrix. Suppose that the inner product of $\mathbf{u}$ and $\mathbf{v}$ satisfies
\[\mathbf{v}^{\trans}\mathbf{u}\neq -1.\]
Define the matrix
\[A=I+\mathbf{u}\mathbf{v}^{\trans}.\]
Prove that $A$ is invertible and the inverse matrix is given by the formula
\[A^{-1}=I-a\mathbf{u}\mathbf{v}^{\trans},\]
where
\[a=\frac{1}{1+\mathbf{v}^{\trans}\mathbf{u}}.\]
This formula is called the Sherman-Woodberry formula.
Add to solve later Suppose that the following matrix $A$ is the augmented matrix for a system of linear equations.
\[A= \left[\begin{array}{rrr|r}
1 & 2 & 3 & 4 \\
2 &-1 & -2 & a^2 \\
-1 & -7 & -11 & a
\end{array} \right],\]
where $a$ is a real number. Determine all the values of $a$ so that the corresponding system is consistent.
Add to solve later We say that two $m\times n$ matrices are row equivalent if one can be obtained from the other by a sequence of elementary row operations.
Let $A$ and $I$ be $2\times 2$ matrices defined as follows.
\[A=\begin{bmatrix}
1 & b\\
c& d
\end{bmatrix}, \qquad I=\begin{bmatrix}
1 & 0\\
0& 1
\end{bmatrix}.\]
Prove that the matrix $A$ is row equivalent to the matrix $I$ if $d-cb \neq 0$.
Read solution
Add to solve later Let
\[A=\begin{bmatrix}
1 & 2 & 2 \\
2 &3 &2 \\
-1 & -3 & -4
\end{bmatrix} \text{ and }
B=\begin{bmatrix}
1 & 2 & 2 \\
2 &3 &2 \\
5 & 3 & 3
\end{bmatrix}.\]
Determine the null spaces of matrices $A$ and $B$.
Add to solve later Let $A$ be an $n \times n$ matrix. Suppose that all the eigenvalues $\lambda$ of $A$ are real and satisfy $\lambda <1$.
Then show that the determinant \[ \det(I-A) >0,\] where $I$ is the $n \times n$ identity matrix.
Add to solve later Let $V$ denote the vector space of all real $n\times n$ matrices, where $n$ is a positive integer.
Determine whether the set $U$ of all $n\times n$ nilpotent matrices is a subspace of the vector space $V$ or not.
Add to solve later Suppose that $n\times n$ matrices $A$ and $B$ are similar.
Then show that the nullity of $A$ is equal to the nullity of $B$.
In other words, the dimension of the null space (kernel) $\calN(A)$ of $A$ is the same as the dimension of the null space $\calN(B)$ of $B$.
Add to solve later For a real number $0\leq \theta \leq \pi$, we define the real $3\times 3$ matrix $A$ by
\[A=\begin{bmatrix}
\cos\theta & -\sin\theta & 0 \\
\sin\theta &\cos\theta &0 \\
0 & 0 & 1
\end{bmatrix}.\]
(a) Find the determinant of the matrix $A$.
(b) Show that $A$ is an orthogonal matrix.
(c) Find the eigenvalues of $A$.
Add to solve later Let $A, B, C$ are $2\times 2$ diagonalizable matrices.
The graphs of characteristic polynomials of $A, B, C$ are shown below. The red graph is for $A$, the blue one for $B$, and the green one for $C$.
From this information, determine the rank of the matrices $A, B,$ and $C$.

Graphs of characteristic polynomials
Add to solve later Let
\[A=\begin{bmatrix}
1 & 3 & 3 \\
-3 &-5 &-3 \\
3 & 3 & 1
\end{bmatrix} \text{ and } B=\begin{bmatrix}
2 & 4 & 3 \\
-4 &-6 &-3 \\
3 & 3 & 1
\end{bmatrix}.\]
For this problem, you may use the fact that both matrices have the same characteristic polynomial:
\[p_A(\lambda)=p_B(\lambda)=-(\lambda-1)(\lambda+2)^2.\]
(a) Find all eigenvectors of $A$.
(b) Find all eigenvectors of $B$.
(c) Which matrix $A$ or $B$ is diagonalizable?
(d) Diagonalize the matrix stated in (c), i.e., find an invertible matrix $P$ and a diagonal matrix $D$ such that $A=PDP^{-1}$ or $B=PDP^{-1}$.
(Stanford University Linear Algebra Final Exam Problem)
Read solution
Add to solve later Find the inverse matrix of the matrix
\[A=\begin{bmatrix}
\frac{2}{7} & \frac{3}{7} & \frac{6}{7} \\[6 pt]
\frac{6}{7} &\frac{2}{7} &-\frac{3}{7} \\[6pt]
-\frac{3}{7} & \frac{6}{7} & -\frac{2}{7}
\end{bmatrix}.\]
Add to solve later Let $A, B$ be matrices. Show that if $A$ is diagonalizable and if $B$ is similar to $A$, then $B$ is diagonalizable.
Add to solve later Let $A$ be an $n\times n$ matrix with real number entries.
Show that if $A$ is diagonalizable by an orthogonal matrix, then $A$ is a symmetric matrix.
Add to solve later Show that eigenvalues of a Hermitian matrix $A$ are real numbers.
(The Ohio State University Linear Algebra Exam Problem)
Read solution
Add to solve later Let
\[ A=\begin{bmatrix}
5 & 2 & -1 \\
2 &2 &2 \\
-1 & 2 & 5
\end{bmatrix}.\]
Pick your favorite number $a$. Find the dimension of the null space of the matrix $A-aI$, where $I$ is the $3\times 3$ identity matrix.
Your score of this problem is equal to that dimension times five.
(The Ohio State University Linear Algebra Practice Problem)
Read solution
Add to solve later Find the value(s) of $h$ for which the following set of vectors
\[\left \{ \mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
h \\
1 \\
-h
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
1 \\
2h \\
3h+1
\end{bmatrix}\right\}\]
is linearly independent.
(Boston College, Linear Algebra Midterm Exam Sample Problem)
Read solution
Add to solve later Let $A$ be a $3 \times 3$ matrix.
Let $\mathbf{x}, \mathbf{y}, \mathbf{z}$ are linearly independent $3$-dimensional vectors. Suppose that we have
\[A\mathbf{x}=\begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}, A\mathbf{y}=\begin{bmatrix}
0 \\
1 \\
0
\end{bmatrix}, A\mathbf{z}=\begin{bmatrix}
1 \\
1 \\
1
\end{bmatrix}.\]
Then find the value of the determinant of the matrix $A$.
Add to solve later Let
\[A=\begin{bmatrix}
1 & -1\\
2& 3
\end{bmatrix}.\]
Find the eigenvalues and the eigenvectors of the matrix
\[B=A^4-3A^3+3A^2-2A+8E.\]
(Nagoya University Linear Algebra Exam Problem)
Read solution
Add to solve later Prove that the matrix
\[A=\begin{bmatrix}
1 & 1.00001 & 1 \\
1.00001 &1 &1.00001 \\
1 & 1.00001 & 1
\end{bmatrix}\]
has one positive eigenvalue and one negative eigenvalue.
(University of California, Berkeley Qualifying Exam Problem)
Read solution
Add to solve later