Let
\[
\mathbf{v}_{1}
=
\begin{bmatrix}
1 \\ 1
\end{bmatrix}
,\;
\mathbf{v}_{2}
=
\begin{bmatrix}
1 \\ -1
\end{bmatrix}
.
\]
Let $V=\Span(\mathbf{v}_{1},\mathbf{v}_{2})$. Do $\mathbf{v}_{1}$ and $\mathbf{v}_{2}$ form an orthonormal basis for $V$?

Let $W$ be a subspace of $\R^4$ with a basis
\[\left\{\, \begin{bmatrix}
1 \\
0 \\
1 \\
1
\end{bmatrix}, \begin{bmatrix}
0 \\
1 \\
1 \\
1
\end{bmatrix} \,\right\}.\]

Find an orthonormal basis of $W$.

(The Ohio State University, Linear Algebra Midterm)

Consider the $2\times 2$ real matrix
\[A=\begin{bmatrix}
1 & 1\\
1& 3
\end{bmatrix}.\]

(a) Prove that the matrix $A$ is positive definite.

(b) Since $A$ is positive definite by part (a), the formula
\[\langle \mathbf{x}, \mathbf{y}\rangle:=\mathbf{x}^{\trans} A \mathbf{y}\]
for $\mathbf{x}, \mathbf{y} \in \R^2$ defines an inner product on $\R^n$.
Consider $\R^2$ as an inner product space with this inner product.

Prove that the unit vectors
\[\mathbf{e}_1=\begin{bmatrix}
1 \\
0
\end{bmatrix} \text{ and } \mathbf{e}_2=\begin{bmatrix}
0 \\
1
\end{bmatrix}\]
are not orthogonal in the inner product space $\R^2$.

(c) Find an orthogonal basis $\{\mathbf{v}_1, \mathbf{v}_2\}$ of $\R^2$ from the basis $\{\mathbf{e}_1, \mathbf{e}_2\}$ using the Gram-Schmidt orthogonalization process.

(a) Let $S=\{\mathbf{v}_1, \mathbf{v}_2\}$ be the set of the following vectors in $\R^4$.
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
1 \\
0
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
0 \\
1 \\
1 \\
0
\end{bmatrix}.\]
Find an orthogonal basis of the subspace $\Span(S)$ of $\R^4$.

(b) Let $T:\R^2 \to \R^3$ be a linear transformation such that
\[T(\mathbf{e}_1)=\mathbf{u}_1 \text{ and } T(\mathbf{e}_2)=\mathbf{u}_2,\]
where $\{\mathbf{e}_1, \mathbf{e}_2\}$ is the standard unit vectors of $\R^2$ and
\[\mathbf{u}_1=\begin{bmatrix}
5 \\
1 \\
2
\end{bmatrix} \text{ and } \mathbf{u}_2=\begin{bmatrix}
8 \\
2 \\
6
\end{bmatrix}.\]
Then find
\[T\left(\, \begin{bmatrix}
3 \\
-2
\end{bmatrix} \,\right).\]