Using Gram-Schmidt Orthogonalization, Find an Orthogonal Basis for the Span

Problems and solutions in Linear Algebra

Problem 716

Using Gram-Schmidt orthogonalization, find an orthogonal basis for the span of the vectors $\mathbf{w}_{1},\mathbf{w}_{2}\in\R^{3}$ if
\[
\mathbf{w}_{1}
=
\begin{bmatrix}
1 \\ 0 \\ 3
\end{bmatrix}
,\quad
\mathbf{w}_{2}
=
\begin{bmatrix}
2 \\ -1 \\ 0
\end{bmatrix}
.
\]

 
LoadingAdd to solve later

Sponsored Links


Solution.

We apply Gram-Schmidt orthogonalization as follows. The first step is to define $\mathbf{u}_{1}=\mathbf{w}_{1}$. Before defining $\mathbf{u}_{2}$, we must compute
\begin{align*}
\mathbf{u}_{1}^{T}\mathbf{w}_{2}
&=
\mathbf{w}_{1}^{T}\mathbf{w}_{2}
=
\begin{bmatrix}
1 & 0 & 3
\end{bmatrix}
\begin{bmatrix}
2 \\ -1 \\ 0
\end{bmatrix}
=2+0+0=2,
\\
\mathbf{u}_{1}^{T}\mathbf{u}_{1}
&=
\mathbf{w}_{1}^{T}\mathbf{w}_{1}
=
\begin{bmatrix}
1 & 0 & 3
\end{bmatrix}
\begin{bmatrix}
1 \\ 0 \\ 3
\end{bmatrix}
=1+0+9=10.
\end{align*}


Next, we define
\[
\mathbf{u}_{2}
=
\mathbf{w}_{2}
-\dfrac{\mathbf{u}_{1}^{T}\mathbf{w}_{2}}
{\mathbf{u}_{1}^{T}\mathbf{u}_{1}}
\mathbf{u}_{1}
=
\begin{bmatrix}
2 \\ -1 \\ 0
\end{bmatrix}
-\dfrac{2}{10}
\begin{bmatrix}
1 \\ 0 \\ 3
\end{bmatrix}
=
\begin{bmatrix}
10/5 \\ -1 \\ 0
\end{bmatrix}

\begin{bmatrix}
1/5 \\ 0 \\ 3/5
\end{bmatrix}
=
\begin{bmatrix}
9/5 \\ -1 \\ -3/5
\end{bmatrix}
.
\] By Gram-Schmidt orthogonalization, $\{\mathbf{u}_{1},\mathbf{u}_{2}\}$ is an orthogonal basis for the span of the vectors $\mathbf{w}_{1}$ and $\mathbf{w}_{2}$.

Remark

Note that since scalar multiplication by a nonzero number does not change the orthogonality of vectors and the new vectors still form a basis, we could have used $5\mathbf{u}_2$, instead of $\mathbf{u}_2$ to avoid a fraction in our computation.
We have
\[5\mathbf{u}_2=\begin{bmatrix}
10 \\
-5 \\
0
\end{bmatrix}-\begin{bmatrix}
1 \\
0 \\
3
\end{bmatrix}=\begin{bmatrix}
9 \\
-5 \\
-3
\end{bmatrix},\] and $\{\mathbf{u}_1, 5\mathbf{u}_2\}$ is an orthogonal basis for the span.


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Linear algebra problems and solutions
Normalize Lengths to Obtain an Orthonormal Basis

Let \[ \mathbf{v}_{1} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} ,\; \mathbf{v}_{2} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} . \] Let...

Close