# Tagged: polynomial

## Problem 607

Let $\calP_3$ be the vector space of all polynomials of degree $3$ or less.
Let
$S=\{p_1(x), p_2(x), p_3(x), p_4(x)\},$ where
\begin{align*}
p_1(x)&=1+3x+2x^2-x^3 & p_2(x)&=x+x^3\\
p_3(x)&=x+x^2-x^3 & p_4(x)&=3+8x+8x^3.
\end{align*}

(a) Find a basis $Q$ of the span $\Span(S)$ consisting of polynomials in $S$.

(b) For each polynomial in $S$ that is not in $Q$, find the coordinate vector with respect to the basis $Q$.

(The Ohio State University, Linear Algebra Midterm)

## Problem 489

Suppose that $\alpha$ is a rational root of a monic polynomial $f(x)$ in $\Z[x]$.
Prove that $\alpha$ is an integer.

## Problem 433

Let $P_3$ be the vector space of polynomials of degree $3$ or less with real coefficients.

(a) Prove that the differentiation is a linear transformation. That is, prove that the map $T:P_3 \to P_3$ defined by
$T\left(\, f(x) \,\right)=\frac{d}{dx} f(x)$ for any $f(x)\in P_3$ is a linear transformation.

(b) Let $B=\{1, x, x^2, x^3\}$ be a basis of $P_3$. With respect to the basis $B$, find the matrix representation of the linear transformation $T$ in part (a).

## Problem 372

For each positive integer $n$, prove that the polynomial
$(x-1)(x-2)\cdots (x-n)-1$ is irreducible over the ring of integers $\Z$.

## Problem 367

Let $P_2$ be the vector space of all polynomials of degree $2$ or less with real coefficients.
Let
$S=\{1+x+2x^2, \quad x+2x^2, \quad -1, \quad x^2\}$ be the set of four vectors in $P_2$.

Then find a basis of the subspace $\Span(S)$ among the vectors in $S$.

(Linear Algebra Exam Problem, the Ohio State University)

## Problem 266

Let $A$ be an $n \times n$ matrix satisfying
$A^2+c_1A+c_0I=O,$ where $c_0, c_1$ are scalars, $I$ is the $n\times n$ identity matrix, and $O$ is the $n\times n$ zero matrix.

Prove that if $c_0\neq 0$, then the matrix $A$ is invertible (nonsingular).
How about the converse? Namely, is it true that if $c_0=0$, then the matrix $A$ is not invertible?

## Problem 256

Let $P_4$ be the vector space consisting of all polynomials of degree $4$ or less with real number coefficients.
Let $W$ be the subspace of $P_2$ by
$W=\{ p(x)\in P_4 \mid p(1)+p(-1)=0 \text{ and } p(2)+p(-2)=0 \}.$ Find a basis of the subspace $W$ and determine the dimension of $W$.

## Problem 179

Prove that $\sqrt[m]{2}$ is an irrational number for any integer $m \geq 2$.

## Problem 157

Let $P_2$ be the vector space of all polynomials of degree two or less.
Consider the subset in $P_2$
$Q=\{ p_1(x), p_2(x), p_3(x), p_4(x)\},$ where
\begin{align*}
&p_1(x)=x^2+2x+1, &p_2(x)=2x^2+3x+1, \\
&p_3(x)=2x^2, &p_4(x)=2x^2+x+1.
\end{align*}

(a) Use the basis $B=\{1, x, x^2\}$ of $P_2$, give the coordinate vectors of the vectors in $Q$.

(b) Find a basis of the span $\Span(Q)$ consisting of vectors in $Q$.

(c) For each vector in $Q$ which is not a basis vector you obtained in (b), express the vector as a linear combination of basis vectors.

## Problem 153

Let $P_3$ be the vector space over $\R$ of all degree three or less polynomial with real number coefficient.
Let $W$ be the following subset of $P_3$.
$W=\{p(x) \in P_3 \mid p'(-1)=0 \text{ and } p^{\prime\prime}(1)=0\}.$ Here $p'(x)$ is the first derivative of $p(x)$ and $p^{\prime\prime}(x)$ is the second derivative of $p(x)$.

Show that $W$ is a subspace of $P_3$ and find a basis for $W$.

## Problem 150

Show that the set
$S=\{1, 1-x, 3+4x+x^2\}$ is a basis of the vector space $P_2$ of all polynomials of degree $2$ or less.

## Problem 137

Let $P_n(\R)$ be the vector space over $\R$ consisting of all degree $n$ or less real coefficient polynomials. Let
$U=\{ p(x) \in P_n(\R) \mid p(1)=0\}$ be a subspace of $P_n(\R)$.

Find a basis for $U$ and determine the dimension of $U$.

## Problem 71

Let $P_2(\R)$ be the vector space over $\R$ consisting of all polynomials with real coefficients of degree $2$ or less.
Let $B=\{1,x,x^2\}$ be a basis of the vector space $P_2(\R)$.
For each linear transformation $T:P_2(\R) \to P_2(\R)$ defined below, find the matrix representation of $T$ with respect to the basis $B$. For $f(x)\in P_2(\R)$, define $T$ as follows.

(a) $T(f(x))=\frac{\mathrm{d}^2}{\mathrm{d}x^2} f(x)-3\frac{\mathrm{d}}{\mathrm{d}x}f(x)$

(b) $T(f(x))=\int_{-1}^1\! (t-x)^2f(t) \,\mathrm{d}t$

(c) $T(f(x))=e^x \frac{\mathrm{d}}{\mathrm{d}x}(e^{-x}f(x))$

## Problem 15

Let $p_1(x), p_2(x), p_3(x), p_4(x)$ be (real) polynomials of degree at most $3$. Which (if any) of the following two conditions is sufficient for the conclusion that these polynomials are linearly dependent?

(a) At $1$ each of the polynomials has the value $0$. Namely $p_i(1)=0$ for $i=1,2,3,4$.

(b) At $0$ each of the polynomials has the value $1$. Namely $p_i(0)=1$ for $i=1,2,3,4$.

(University of California, Berkeley)