Prime-Ideal

LoadingAdd to solve later

Prime Ideal Problems and Solution in Ring Theory in Mathematics


LoadingAdd to solve later

More from my site

  • Express a Vector as a Linear Combination of Other VectorsExpress a Vector as a Linear Combination of Other Vectors Express the vector $\mathbf{b}=\begin{bmatrix} 2 \\ 13 \\ 6 \end{bmatrix}$ as a linear combination of the vectors \[\mathbf{v}_1=\begin{bmatrix} 1 \\ 5 \\ -1 \end{bmatrix}, \mathbf{v}_2= \begin{bmatrix} 1 \\ 2 \\ 1 […]
  • If the Quotient Ring is a Field, then the Ideal is MaximalIf the Quotient Ring is a Field, then the Ideal is Maximal Let $R$ be a ring with unit $1\neq 0$. Prove that if $M$ is an ideal of $R$ such that $R/M$ is a field, then $M$ is a maximal ideal of $R$. (Do not assume that the ring $R$ is commutative.)   Proof. Let $I$ be an ideal of $R$ such that \[M \subset I \subset […]
  • Find the Formula for the Power of a Matrix Using Linear Recurrence RelationFind the Formula for the Power of a Matrix Using Linear Recurrence Relation Suppose that $A$ is $2\times 2$ matrix that has eigenvalues $-1$ and $3$. Then for each positive integer $n$ find $a_n$ and $b_n$ such that \[A^{n+1}=a_nA+b_nI,\] where $I$ is the $2\times 2$ identity matrix.   Solution. Since $-1, 3$ are eigenvalues of the […]
  • Matrix Operations with TransposeMatrix Operations with Transpose Calculate the following expressions, using the following matrices: \[A = \begin{bmatrix} 2 & 3 \\ -5 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & -1 \\ 1 & -1 \end{bmatrix}, \qquad \mathbf{v} = \begin{bmatrix} 2 \\ -4 \end{bmatrix}\] (a) $A B^\trans + \mathbf{v} […]
  • The Range and Nullspace of the Linear Transformation $T (f) (x) = x f(x)$The Range and Nullspace of the Linear Transformation $T (f) (x) = x f(x)$ For an integer $n > 0$, let $\mathrm{P}_n$ be the vector space of polynomials of degree at most $n$. The set $B = \{ 1 , x , x^2 , \cdots , x^n \}$ is a basis of $\mathrm{P}_n$, called the standard basis. Let $T : \mathrm{P}_n \rightarrow \mathrm{P}_{n+1}$ be the map defined by, […]
  • Similar Matrices Have the Same EigenvaluesSimilar Matrices Have the Same Eigenvalues Show that if $A$ and $B$ are similar matrices, then they have the same eigenvalues and their algebraic multiplicities are the same. Proof. We prove that $A$ and $B$ have the same characteristic polynomial. Then the result follows immediately since eigenvalues and algebraic […]
  • Powers of a Diagonal MatrixPowers of a Diagonal Matrix Let $A=\begin{bmatrix} a & 0\\ 0& b \end{bmatrix}$. Show that (1) $A^n=\begin{bmatrix} a^n & 0\\ 0& b^n \end{bmatrix}$ for any $n \in \N$. (2) Let $B=S^{-1}AS$, where $S$ be an invertible $2 \times 2$ matrix. Show that $B^n=S^{-1}A^n S$ for any $n \in […]
  • The Coordinate Vector for a Polynomial with respect to the Given BasisThe Coordinate Vector for a Polynomial with respect to the Given Basis Let $\mathrm{P}_3$ denote the set of polynomials of degree $3$ or less with real coefficients. Consider the ordered basis \[B = \left\{ 1+x , 1+x^2 , x - x^2 + 2x^3 , 1 - x - x^2 \right\}.\] Write the coordinate vector for the polynomial $f(x) = -3 + 2x^3$ in terms of the basis […]

Leave a Reply

Your email address will not be published. Required fields are marked *