# Prime-Ideal

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Find the Limit of a Matrix Let \[A=\begin{bmatrix} \frac{1}{7} & \frac{3}{7} & \frac{3}{7} \\ \frac{3}{7} &\frac{1}{7} &\frac{3}{7} \\ \frac{3}{7} & \frac{3}{7} & \frac{1}{7} \end{bmatrix}\] be $3 \times 3$ matrix. Find \[\lim_{n \to \infty} A^n.\] (Nagoya University Linear […]
- Group Generated by Commutators of Two Normal Subgroups is a Normal Subgroup Let $G$ be a group and $H$ and $K$ be subgroups of $G$. For $h \in H$, and $k \in K$, we define the commutator $[h, k]:=hkh^{-1}k^{-1}$. Let $[H,K]$ be a subgroup of $G$ generated by all such commutators. Show that if $H$ and $K$ are normal subgroups of $G$, then the subgroup […]
- The Set $ \{ a + b \cos(x) + c \cos(2x) \mid a, b, c \in \mathbb{R} \}$ is a Subspace in $C(\R)$ Let $C(\mathbb{R})$ be the vector space of real-valued functions on $\mathbb{R}$. Consider the set of functions $W = \{ f(x) = a + b \cos(x) + c \cos(2x) \mid a, b, c \in \mathbb{R} \}$. Prove that $W$ is a vector subspace of $C(\mathbb{R})$. Proof. We verify […]
- Find a Value of a Linear Transformation From $\R^2$ to $\R^3$ Let $T:\R^2 \to \R^3$ be a linear transformation such that $T(\mathbf{e}_1)=\mathbf{u}_1$ and $T(\mathbf{e}_2)=\mathbf{u}_2$, where $\mathbf{e}_1=\begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{e}_2=\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ are unit vectors of $\R^2$ and […]
- The Intersection of Two Subspaces is also a Subspace Let $U$ and $V$ be subspaces of the $n$-dimensional vector space $\R^n$. Prove that the intersection $U\cap V$ is also a subspace of $\R^n$. Definition (Intersection). Recall that the intersection $U\cap V$ is the set of elements that are both elements of $U$ […]
- Quiz 12. Find Eigenvalues and their Algebraic and Geometric Multiplicities (a) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 &1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix}.\] Find the eigenvalues of the matrix $A$. Also give the algebraic multiplicity of each eigenvalue. (b) Let \[A=\begin{bmatrix} 0 & 0 & 0 & 0 […]
- True of False Problems on Determinants and Invertible Matrices Determine whether each of the following statements is True or False. (a) If $A$ and $B$ are $n \times n$ matrices, and $P$ is an invertible $n \times n$ matrix such that $A=PBP^{-1}$, then $\det(A)=\det(B)$. (b) If the characteristic polynomial of an $n \times n$ matrix $A$ […]
- Diagonalize a 2 by 2 Matrix $A$ and Calculate the Power $A^{100}$ Let \[A=\begin{bmatrix} 1 & 2\\ 4& 3 \end{bmatrix}.\] (a) Find eigenvalues of the matrix $A$. (b) Find eigenvectors for each eigenvalue of $A$. (c) Diagonalize the matrix $A$. That is, find an invertible matrix $S$ and a diagonal matrix $D$ such that […]