# Prime-Ideal

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- Solve a Linear Recurrence Relation Using Vector Space Technique Let $V$ be a real vector space of all real sequences \[(a_i)_{i=1}^{\infty}=(a_1, a_2, \dots).\] Let $U$ be a subspace of $V$ defined by \[U=\{(a_i)_{i=1}^{\infty}\in V \mid a_{n+2}=2a_{n+1}+3a_{n} \text{ for } n=1, 2,\dots \}.\] Let $T$ be the linear transformation from […]
- A Ring Has Infinitely Many Nilpotent Elements if $ab=1$ and $ba \neq 1$ Let $R$ be a ring with $1$. Suppose that $a, b$ are elements in $R$ such that \[ab=1 \text{ and } ba\neq 1.\] (a) Prove that $1-ba$ is idempotent. (b) Prove that $b^n(1-ba)$ is nilpotent for each positive integer $n$. (c) Prove that the ring $R$ has infinitely many […]
- Given Eigenvectors and Eigenvalues, Compute a Matrix Product (Stanford University Exam) Suppose that $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$. Compute $A^2\begin{bmatrix} 4 […]
- Diagonalize the 3 by 3 Matrix if it is Diagonalizable Determine whether the matrix \[A=\begin{bmatrix} 0 & 1 & 0 \\ -1 &0 &0 \\ 0 & 0 & 2 \end{bmatrix}\] is diagonalizable. If it is diagonalizable, then find the invertible matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$. How to […]
- Prove a Group is Abelian if $(ab)^2=a^2b^2$ Let $G$ be a group. Suppose that \[(ab)^2=a^2b^2\] for any elements $a, b$ in $G$. Prove that $G$ is an abelian group. Proof. To prove that $G$ is an abelian group, we need \[ab=ba\] for any elements $a, b$ in $G$. By the given […]
- Every Plane Through the Origin in the Three Dimensional Space is a Subspace Prove that every plane in the $3$-dimensional space $\R^3$ that passes through the origin is a subspace of $\R^3$. Proof. Each plane $P$ in $\R^3$ through the origin is given by the equation \[ax+by+cz=0\] for some real numbers $a, b, c$. That is, the […]
- The Subspace of Matrices that are Diagonalized by a Fixed Matrix Suppose that $S$ is a fixed invertible $3$ by $3$ matrix. This question is about all the matrices $A$ that are diagonalized by $S$, so that $S^{-1}AS$ is diagonal. Show that these matrices $A$ form a subspace of $3$ by $3$ matrix space. (MIT-Massachusetts Institute of Technology […]
- Find the Matrix Representation of $T(f)(x) = f(x^2)$ if it is a Linear Transformation For an integer $n > 0$, let $\mathrm{P}_n$ denote the vector space of polynomials with real coefficients of degree $2$ or less. Define the map $T : \mathrm{P}_2 \rightarrow \mathrm{P}_4$ by \[ T(f)(x) = f(x^2).\] Determine if $T$ is a linear transformation. If it is, find […]