How to Use the Z-table to Compute Probabilities of Non-Standard Normal Distributions

Probability problems

Problem 758

Let $X\sim \mathcal{N}(\mu, \sigma)$ be a normal random variable with parameter $\mu=6$ and $\sigma^2=4$. Find the following probabilities using the Z-table below.

(a) Find $P(X \lt 7)$.

(b) Find $P(X \lt 3)$.

(c) Find $P(4.5 \lt X \lt 8.5)$.

LoadingAdd to solve later

Sponsored Links

The Z-table is available at the bottom of this article.

Solution.

To make use of the Z-table, we need to relate current problems to a standard normal distribution $\mathcal{N}(0, 1)$ with mean $0$ and deviation $1$. To do this, as $X$ is a normal random variable with mean $\mu = 6$ and standard deviation $\sigma = 2$, the new random variable $Z$ defined by
\[Z = \frac{X – 6}{2}\] is a standard normal random variable.

Solution of (a)

The inequality $X < 7$ is equivalent to the inequality \[Z = \frac{X - 6}{2} < \frac{7-6}{2} = 0.5.\] Thus, the required probability is \begin{align*} P(X < 7) = P(Z < 0.5)= \Phi(0.5). \end{align*} Here, $\Phi(x)$ is the cumulative distribution function of a standard normal random variable $Z$. The value of $\Phi(0.5)$ can be found from the Z-table. Looking at row 0.5 and column 0.00, we see that $\Phi(0.5) \approx 0.6915$. Hence, the answer is
\[P(X < 7 ) \approx 0.6915.\]

Solution of (b)

As we did in Part (a), we transform the inequality and get
\begin{align*}
P(X \lt 3) &= P\left(\frac{X-6}{2} \lt \frac{3-6}{2}\right)\\[6pt] &= P(Z \lt -1.5)\\
&= \Phi(-1.5).
\end{align*}

Now, note that the Z-table gives the values of $\Phi(x)$ for only non-negative $x$.
Thus, to compute $\Phi(-1.5)$, we use the symmetry of the graph of a standard normal distribution. As $\Phi(-1.5)$ is the area under the bell curve from $-\infty$ to $-1.5$, this is equal to the area under the bell curve from $1.5$ to $\infty$ by symmetry, which is the same as $1-\Phi(1.5)$.

See the figure below. In the figure, the left orange region is $\Phi(-1.5)$, which is equal to the right orange region. Since the total area under the curve $\Phi(x)$ is $1$, the area of the right orange region is $1 – \Phi(1.5)$.

symmetry of normal distribution

Thus
\begin{align*}
\Phi(-1.5) &= 1 – \Phi(1.5)\\
&\approx 1 – 0.9332 && \text{ from the Z-table}\\
&= 0.0668.
\end{align*}
Thus, we obtain the probability
\[P(X < 3) \approx 0.0668.\]

Solution of (c)

Again, by normalizing, we obtain
\begin{align*}
P(4.5 < X < 8.5) &= P\left( \frac{4.5 - 6}{2} < X < \frac{X - 6}{2} < \frac{8.5 - 6}{2} \right)\\ &=P(-0.75 < Z < 1.25)\\ &= \Phi(1.25) - \Phi(-0.75). \end{align*} Now, to find the value of $\Phi(-0.75)$ from the Z-table, we use the symmetry of the bell curve as in part (b) and we see $\Phi(-0.75) = 1 – \Phi(0.75)$.
Thus,
\begin{align*}
P(4.5 < X < 8.5) &= \Phi(1.25) - \Phi(-0.75)\\ &= \Phi(1.25) - (1-\Phi(0.75))\\ &= \Phi(1.25) + \Phi(0.75) - 1\\ &\approx 0.8944 + 0.7734 - 1\\ &=0.6678. \end{align*} Note that we found values $\Phi(1.25)\approx 0.8944$ and $\phi(0.75)\approx 0.7734$ from the Z-table.
In conclusion, we have
\[P(4.5 < X < 8.5) \approx 0.6678.\]

Z-table

The Z-table below gives numerical values for the cummulative distribution function $\Phi(x)$ of the standard normal random variable $Z$.

(You may need a large display to see the whole table.)

\begin{array}{rrrrrrrrrrr}
\hline
& 0.00 & 0.01 & 0.02 & 0.03 & 0.04 & 0.05 & 0.06 & 0.07 & 0.08 & 0.09 \\
\hline
0.0 & 0.5000 & 0.5040 & 0.5080 & 0.5120 & 0.5160 & 0.5199 & 0.5239 & 0.5279 & 0.5319 & 0.5359 \\
0.1 & 0.5398 & 0.5438 & 0.5478 & 0.5517 & 0.5557 & 0.5596 & 0.5636 & 0.5675 & 0.5714 & 0.5753 \\
0.2 & 0.5793 & 0.5832 & 0.5871 & 0.5910 & 0.5948 & 0.5987 & 0.6026 & 0.6064 & 0.6103 & 0.6141 \\
0.3 & 0.6179 & 0.6217 & 0.6255 & 0.6293 & 0.6331 & 0.6368 & 0.6406 & 0.6443 & 0.6480 & 0.6517 \\
0.4 & 0.6554 & 0.6591 & 0.6628 & 0.6664 & 0.6700 & 0.6736 & 0.6772 & 0.6808 & 0.6844 & 0.6879 \\
0.5 & 0.6915 & 0.6950 & 0.6985 & 0.7019 & 0.7054 & 0.7088 & 0.7123 & 0.7157 & 0.7190 & 0.7224 \\
0.6 & 0.7257 & 0.7291 & 0.7324 & 0.7357 & 0.7389 & 0.7422 & 0.7454 & 0.7486 & 0.7517 & 0.7549 \\
0.7 & 0.7580 & 0.7611 & 0.7642 & 0.7673 & 0.7704 & 0.7734 & 0.7764 & 0.7794 & 0.7823 & 0.7852 \\
0.8 & 0.7881 & 0.7910 & 0.7939 & 0.7967 & 0.7995 & 0.8023 & 0.8051 & 0.8078 & 0.8106 & 0.8133 \\
0.9 & 0.8159 & 0.8186 & 0.8212 & 0.8238 & 0.8264 & 0.8289 & 0.8315 & 0.8340 & 0.8365 & 0.8389 \\
1.0 & 0.8413 & 0.8438 & 0.8461 & 0.8485 & 0.8508 & 0.8531 & 0.8554 & 0.8577 & 0.8599 & 0.8621 \\
1.1 & 0.8643 & 0.8665 & 0.8686 & 0.8708 & 0.8729 & 0.8749 & 0.8770 & 0.8790 & 0.8810 & 0.8830 \\
1.2 & 0.8849 & 0.8869 & 0.8888 & 0.8907 & 0.8925 & 0.8944 & 0.8962 & 0.8980 & 0.8997 & 0.9015 \\
1.3 & 0.9032 & 0.9049 & 0.9066 & 0.9082 & 0.9099 & 0.9115 & 0.9131 & 0.9147 & 0.9162 & 0.9177 \\
1.4 & 0.9192 & 0.9207 & 0.9222 & 0.9236 & 0.9251 & 0.9265 & 0.9279 & 0.9292 & 0.9306 & 0.9319 \\
1.5 & 0.9332 & 0.9345 & 0.9357 & 0.9370 & 0.9382 & 0.9394 & 0.9406 & 0.9418 & 0.9429 & 0.9441 \\
1.6 & 0.9452 & 0.9463 & 0.9474 & 0.9484 & 0.9495 & 0.9505 & 0.9515 & 0.9525 & 0.9535 & 0.9545 \\
1.7 & 0.9554 & 0.9564 & 0.9573 & 0.9582 & 0.9591 & 0.9599 & 0.9608 & 0.9616 & 0.9625 & 0.9633 \\
1.8 & 0.9641 & 0.9649 & 0.9656 & 0.9664 & 0.9671 & 0.9678 & 0.9686 & 0.9693 & 0.9699 & 0.9706 \\
1.9 & 0.9713 & 0.9719 & 0.9726 & 0.9732 & 0.9738 & 0.9744 & 0.9750 & 0.9756 & 0.9761 & 0.9767 \\
2.0 & 0.9772 & 0.9778 & 0.9783 & 0.9788 & 0.9793 & 0.9798 & 0.9803 & 0.9808 & 0.9812 & 0.9817 \\
2.1 & 0.9821 & 0.9826 & 0.9830 & 0.9834 & 0.9838 & 0.9842 & 0.9846 & 0.9850 & 0.9854 & 0.9857 \\
2.2 & 0.9861 & 0.9864 & 0.9868 & 0.9871 & 0.9875 & 0.9878 & 0.9881 & 0.9884 & 0.9887 & 0.9890 \\
2.3 & 0.9893 & 0.9896 & 0.9898 & 0.9901 & 0.9904 & 0.9906 & 0.9909 & 0.9911 & 0.9913 & 0.9916 \\
2.4 & 0.9918 & 0.9920 & 0.9922 & 0.9925 & 0.9927 & 0.9929 & 0.9931 & 0.9932 & 0.9934 & 0.9936 \\
2.5 & 0.9938 & 0.9940 & 0.9941 & 0.9943 & 0.9945 & 0.9946 & 0.9948 & 0.9949 & 0.9951 & 0.9952 \\
2.6 & 0.9953 & 0.9955 & 0.9956 & 0.9957 & 0.9959 & 0.9960 & 0.9961 & 0.9962 & 0.9963 & 0.9964 \\
2.7 & 0.9965 & 0.9966 & 0.9967 & 0.9968 & 0.9969 & 0.9970 & 0.9971 & 0.9972 & 0.9973 & 0.9974 \\
2.8 & 0.9974 & 0.9975 & 0.9976 & 0.9977 & 0.9977 & 0.9978 & 0.9979 & 0.9979 & 0.9980 & 0.9981 \\
2.9 & 0.9981 & 0.9982 & 0.9982 & 0.9983 & 0.9984 & 0.9984 & 0.9985 & 0.9985 & 0.9986 & 0.9986 \\
3.0 & 0.9987 & 0.9987 & 0.9987 & 0.9988 & 0.9988 & 0.9989 & 0.9989 & 0.9989 & 0.9990 & 0.9990 \\
\hline
\end{array}


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Probability
Probability problems
Expected Value and Variance of Exponential Random Variable

Let $X$ be an exponential random variable with parameter $\lambda$. (a) For any positive integer $n$, prove that \[E[X^n] =...

Close