If There are 28 Elements of Order 5, How Many Subgroups of Order 5?

Group Theory Problems and Solutions in Mathematics

Problem 626

Let $G$ be a group. Suppose that the number of elements in $G$ of order $5$ is $28$.

Determine the number of distinct subgroups of $G$ of order $5$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

Let $g$ be an element in $G$ of order $5$.
Then the subgroup $\langle g \rangle$ generated by $g$ is a cyclic group of order $5$.
That is, $\langle g \rangle=\{e, g, g^2, g^3, g^4\}$, where $e$ is the identity element in $G$.

Note that the order of each non-identity element in $\langle g \rangle$ is $5$.


Also, if $h$ is another element in $G$ of order $5$, then we have either $\langle g \rangle=\langle h \rangle$ or $\langle g \rangle \cap \langle h \rangle = \{e\}$.
This follows from the fact that the intersection $\langle g \rangle \cap \langle h \rangle$ is a subgroup of the order $5$ group $\langle g \rangle$, and thus the order of $\langle g \rangle \cap \langle h \rangle$ is either $5$ or $1$.


On the other hand, if $H$ is a subgroup of $G$ of order $5$, then every non-identity element in $H$ has order $5$.


These observations imply that each subgroup of order $5$ contains exactly $4$ elements of order $5$ and each element of order $5$ appears in exactly one of such subgroups.

As there are $28$ elements of order $5$, there are $28/4=7$ subgroups of order $5$.


LoadingAdd to solve later

Sponsored Links

More from my site

  • The Number of Elements Satisfying $g^5=e$ in a Finite Group is OddThe Number of Elements Satisfying $g^5=e$ in a Finite Group is Odd Let $G$ be a finite group. Let $S$ be the set of elements $g$ such that $g^5=e$, where $e$ is the identity element in the group $G$. Prove that the number of elements in $S$ is odd.   Proof. Let $g\neq e$ be an element in the group $G$ such that $g^5=e$. As […]
  • A Simple Abelian Group if and only if the Order is a Prime NumberA Simple Abelian Group if and only if the Order is a Prime Number Let $G$ be a group. (Do not assume that $G$ is a finite group.) Prove that $G$ is a simple abelian group if and only if the order of $G$ is a prime number.   Definition. A group $G$ is called simple if $G$ is a nontrivial group and the only normal subgroups of $G$ is […]
  • Determine the Number of Elements of Order 3 in a Non-Cyclic Group of Order 57Determine the Number of Elements of Order 3 in a Non-Cyclic Group of Order 57 Let $G$ be a group of order $57$. Assume that $G$ is not a cyclic group. Then determine the number of elements in $G$ of order $3$.   Proof. Observe the prime factorization $57=3\cdot 19$. Let $n_{19}$ be the number of Sylow $19$-subgroups of $G$. By […]
  • Normal Subgroup Whose Order is Relatively Prime to Its IndexNormal Subgroup Whose Order is Relatively Prime to Its Index Let $G$ be a finite group and let $N$ be a normal subgroup of $G$. Suppose that the order $n$ of $N$ is relatively prime to the index $|G:N|=m$. (a) Prove that $N=\{a\in G \mid a^n=e\}$. (b) Prove that $N=\{b^m \mid b\in G\}$.   Proof. Note that as $n$ and […]
  • Group of Order $pq$ Has a Normal Sylow Subgroup and SolvableGroup of Order $pq$ Has a Normal Sylow Subgroup and Solvable Let $p, q$ be prime numbers such that $p>q$. If a group $G$ has order $pq$, then show the followings. (a) The group $G$ has a normal Sylow $p$-subgroup. (b) The group $G$ is solvable.   Definition/Hint For (a), apply Sylow's theorem. To review Sylow's theorem, […]
  • A Group of Order $20$ is SolvableA Group of Order $20$ is Solvable Prove that a group of order $20$ is solvable.   Hint. Show that a group of order $20$ has a unique normal $5$-Sylow subgroup by Sylow's theorem. See the post summary of Sylow’s Theorem to review Sylow's theorem. Proof. Let $G$ be a group of order $20$. The […]
  • Infinite Cyclic Groups Do Not Have Composition SeriesInfinite Cyclic Groups Do Not Have Composition Series Let $G$ be an infinite cyclic group. Then show that $G$ does not have a composition series.   Proof. Let $G=\langle a \rangle$ and suppose that $G$ has a composition series \[G=G_0\rhd G_1 \rhd \cdots G_{m-1} \rhd G_m=\{e\},\] where $e$ is the identity element of […]
  • Use Lagrange’s Theorem to Prove Fermat’s Little TheoremUse Lagrange’s Theorem to Prove Fermat’s Little Theorem Use Lagrange's Theorem in the multiplicative group $(\Zmod{p})^{\times}$ to prove Fermat's Little Theorem: if $p$ is a prime number then $a^p \equiv a \pmod p$ for all $a \in \Z$.   Before the proof, let us recall Lagrange's Theorem. Lagrange's Theorem If $G$ is a […]

You may also like...

1 Response

  1. zahid hussain malik says:

    thankyou sir ,so helpfull

Click here to cancel reply.

Please Login to Comment.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Group Theory
Group Theory Problems and Solutions
Union of Two Subgroups is Not a Group

Let $G$ be a group and let $H_1, H_2$ be subgroups of $G$ such that $H_1 \not \subset H_2$ and...

Close