True of False Problems on Determinants and Invertible Matrices

Problem 438

Determine whether each of the following statements is True or False.

(a) If $A$ and $B$ are $n \times n$ matrices, and $P$ is an invertible $n \times n$ matrix such that $A=PBP^{-1}$, then $\det(A)=\det(B)$.

(b) If the characteristic polynomial of an $n \times n$ matrix $A$ is
\[p(\lambda)=(\lambda-1)^n+2,\] then $A$ is invertible.

(c) If $A^2$ is an invertible $n\times n$ matrix, then $A^3$ is also invertible.

(d) If $A$ is a $3\times 3$ matrix such that $\det(A)=7$, then $\det(2A^{\trans}A^{-1})=2$.

(e) If $\mathbf{v}$ is an eigenvector of an $n \times n$ matrix $A$ with corresponding eigenvalue $\lambda_1$, and if $\mathbf{w}$ is an eigenvector of $A$ with corresponding eigenvalue $\lambda_2$, then $\mathbf{v}+\mathbf{w}$ is an eigenvector of $A$ with corresponding eigenvalue $\lambda_1+\lambda_2$.

(Stanford University, Linear Algebra Exam Problem)
 
Read solution

LoadingAdd to solve later

Subspace Spanned By Cosine and Sine Functions

Problem 435

Let $\calF[0, 2\pi]$ be the vector space of all real valued functions defined on the interval $[0, 2\pi]$.
Define the map $f:\R^2 \to \calF[0, 2\pi]$ by
\[\left(\, f\left(\, \begin{bmatrix}
\alpha \\
\beta
\end{bmatrix} \,\right) \,\right)(x):=\alpha \cos x + \beta \sin x.\] We put
\[V:=\im f=\{\alpha \cos x + \beta \sin x \in \calF[0, 2\pi] \mid \alpha, \beta \in \R\}.\]

(a) Prove that the map $f$ is a linear transformation.

(b) Prove that the set $\{\cos x, \sin x\}$ is a basis of the vector space $V$.

(c) Prove that the kernel is trivial, that is, $\ker f=\{\mathbf{0}\}$.
(This yields an isomorphism of $\R^2$ and $V$.)

(d) Define a map $g:V \to V$ by
\[g(\alpha \cos x + \beta \sin x):=\frac{d}{dx}(\alpha \cos x+ \beta \sin x)=\beta \cos x -\alpha \sin x.\] Prove that the map $g$ is a linear transformation.

(e) Find the matrix representation of the linear transformation $g$ with respect to the basis $\{\cos x, \sin x\}$.

(Kyoto University, Linear Algebra exam problem)

 
Read solution

LoadingAdd to solve later

A Module is Irreducible if and only if It is a Cyclic Module With Any Nonzero Element as Generator

Problem 434

Let $R$ be a ring with $1$.
A nonzero $R$-module $M$ is called irreducible if $0$ and $M$ are the only submodules of $M$.
(It is also called a simple module.)

(a) Prove that a nonzero $R$-module $M$ is irreducible if and only if $M$ is a cyclic module with any nonzero element as its generator.

(b) Determine all the irreducible $\Z$-modules.

 
Read solution

LoadingAdd to solve later

Differentiation is a Linear Transformation

Problem 433

Let $P_3$ be the vector space of polynomials of degree $3$ or less with real coefficients.

(a) Prove that the differentiation is a linear transformation. That is, prove that the map $T:P_3 \to P_3$ defined by
\[T\left(\, f(x) \,\right)=\frac{d}{dx} f(x)\] for any $f(x)\in P_3$ is a linear transformation.

(b) Let $B=\{1, x, x^2, x^3\}$ be a basis of $P_3$. With respect to the basis $B$, find the matrix representation of the linear transformation $T$ in part (a).

 
Read solution

LoadingAdd to solve later

Finitely Generated Torsion Module Over an Integral Domain Has a Nonzero Annihilator

Problem 432

(a) Let $R$ be an integral domain and let $M$ be a finitely generated torsion $R$-module.
Prove that the module $M$ has a nonzero annihilator.
In other words, show that there is a nonzero element $r\in R$ such that $rm=0$ for all $m\in M$.
Here $r$ does not depend on $m$.

(b) Find an example of an integral domain $R$ and a torsion $R$-module $M$ whose annihilator is the zero ideal.

 
Read solution

LoadingAdd to solve later

Restriction of a Linear Transformation on the x-z Plane is a Linear Transformation

Problem 428

Let $T:\R^3 \to \R^3$ be a linear transformation and suppose that its matrix representation with respect to the standard basis is given by the matrix
\[A=\begin{bmatrix}
1 & 0 & 2 \\
0 &3 &0 \\
4 & 0 & 5
\end{bmatrix}.\]

(a) Prove that the linear transformation $T$ sends points on the $x$-$z$ plane to points on the $x$-$z$ plane.

(b) Prove that the restriction of $T$ on the $x$-$z$ plane is a linear transformation.

(c) Find the matrix representation of the linear transformation obtained in part (b) with respect to the standard basis
\[\left\{\, \begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix} \,\right\}\] of the $x$-$z$ plane.

 
Read solution

LoadingAdd to solve later

If $A$ is an Idempotent Matrix, then When $I-kA$ is an Idempotent Matrix?

Problem 426

A square matrix $A$ is called idempotent if $A^2=A$.

(a) Suppose $A$ is an $n \times n$ idempotent matrix and let $I$ be the $n\times n$ identity matrix. Prove that the matrix $I-A$ is an idempotent matrix.

(b) Assume that $A$ is an $n\times n$ nonzero idempotent matrix. Then determine all integers $k$ such that the matrix $I-kA$ is idempotent.

(c) Let $A$ and $B$ be $n\times n$ matrices satisfying
\[AB=A \text{ and } BA=B.\] Then prove that $A$ is an idempotent matrix.

 
Read solution

LoadingAdd to solve later

Every Complex Matrix Can Be Written as $A=B+iC$, where $B, C$ are Hermitian Matrices

Problem 425

(a) Prove that each complex $n\times n$ matrix $A$ can be written as
\[A=B+iC,\] where $B$ and $C$ are Hermitian matrices.

(b) Write the complex matrix
\[A=\begin{bmatrix}
i & 6\\
2-i& 1+i
\end{bmatrix}\] as a sum $A=B+iC$, where $B$ and $C$ are Hermitian matrices.

 
Read solution

LoadingAdd to solve later

If Two Matrices Have the Same Eigenvalues with Linearly Independent Eigenvectors, then They Are Equal

Problem 424

Let $A$ and $B$ be $n\times n$ matrices.
Suppose that $A$ and $B$ have the same eigenvalues $\lambda_1, \dots, \lambda_n$ with the same corresponding eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$.
Prove that if the eigenvectors $\mathbf{x}_1, \dots, \mathbf{x}_n$ are linearly independent, then $A=B$.

 
Read solution

LoadingAdd to solve later

Difference Between Ring Homomorphisms and Module Homomorphisms

Problem 422

Let $R$ be a ring with $1$ and consider $R$ as a module over itself.

(a) Determine whether every module homomorphism $\phi:R\to R$ is a ring homomorphism.

(b) Determine whether every ring homomorphism $\phi: R\to R$ is a module homomorphism.

(c) If $\phi:R\to R$ is both a module homomorphism and a ring homomorphism, what can we say about $\phi$?

 
Read solution

LoadingAdd to solve later

Fundamental Theorem of Finitely Generated Abelian Groups and its application

Problem 420

In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem.

Problem.
Let $G$ be a finite abelian group of order $n$.
If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic to the cyclic group $Z_n=\Zmod{n}$ of order $n$.

 
Read solution

LoadingAdd to solve later