Let $R$ be a commutative ring with $1$. Prove that the principal ideal $(x)$ generated by the element $x$ in the polynomial ring $R[x]$ is a prime ideal if and only if $R$ is an integral domain.

Prove also that the ideal $(x)$ is a maximal ideal if and only if $R$ is a field.

Let $G$ be a group. Assume that $H$ and $K$ are both normal subgroups of $G$ and $H \cap K=1$. Then for any elements $h \in H$ and $k\in K$, show that $hk=kh$.

Find the value(s) of $h$ for which the following set of vectors
\[\left \{ \mathbf{v}_1=\begin{bmatrix}
1 \\
0 \\
0
\end{bmatrix}, \mathbf{v}_2=\begin{bmatrix}
h \\
1 \\
-h
\end{bmatrix}, \mathbf{v}_3=\begin{bmatrix}
1 \\
2h \\
3h+1
\end{bmatrix}\right\}\]
is linearly independent.

(Boston College, Linear Algebra Midterm Exam Sample Problem)

Prove that the matrix
\[A=\begin{bmatrix}
1 & 1.00001 & 1 \\
1.00001 &1 &1.00001 \\
1 & 1.00001 & 1
\end{bmatrix}\]
has one positive eigenvalue and one negative eigenvalue.

(University of California, Berkeley Qualifying Exam Problem)

Denote by $i$ the square root of $-1$.
Let
\[R=\Z[i]=\{a+ib \mid a, b \in \Z \}\]
be the ring of Gaussian integers.
We define the norm $N:\Z[i] \to \Z$ by sending $\alpha=a+ib$ to
\[N(\alpha)=\alpha \bar{\alpha}=a^2+b^2.\]

Here $\bar{\alpha}$ is the complex conjugate of $\alpha$.
Then show that an element $\alpha \in R$ is a unit if and only if the norm $N(\alpha)=\pm 1$.
Also, determine all the units of the ring $R=\Z[i]$ of Gaussian integers.

Let $A$ be an $n\times n$ matrix. Suppose that $\lambda_1, \lambda_2$ are distinct eigenvalues of the matrix $A$ and let $\mathbf{v}_1, \mathbf{v}_2$ be eigenvectors corresponding to $\lambda_1, \lambda_2$, respectively.

Show that the vectors $\mathbf{v}_1, \mathbf{v}_2$ are linearly independent.

Let $A=(a_{ij})$ be an $n \times n$ matrix.
We say that $A=(a_{ij})$ is a right stochastic matrix if each entry $a_{ij}$ is nonnegative and the sum of the entries of each row is $1$. That is, we have
\[a_{ij}\geq 0 \quad \text{ and } \quad a_{i1}+a_{i2}+\cdots+a_{in}=1\]
for $1 \leq i, j \leq n$.

Let $A=(a_{ij})$ be an $n\times n$ right stochastic matrix. Then show the following statements.

(a)The stochastic matrix $A$ has an eigenvalue $1$.

(b) The absolute value of any eigenvalue of the stochastic matrix $A$ is less than or equal to $1$.

Suppose that $A$ and $P$ are $3 \times 3$ matrices and $P$ is invertible matrix.
If
\[P^{-1}AP=\begin{bmatrix}
1 & 2 & 3 \\
0 &4 &5 \\
0 & 0 & 6
\end{bmatrix},\]
then find all the eigenvalues of the matrix $A^2$.

Let $A$ be an $n \times n$ matrix. Suppose that the matrix $A^2$ has a real eigenvalue $\lambda>0$. Then show that either $\sqrt{\lambda}$ or $-\sqrt{\lambda}$ is an eigenvalue of the matrix $A$.

Let $T$ be a linear transformation from the vector space $\R^3$ to $\R^3$.
Suppose that $k=3$ is the smallest positive integer such that $T^k=\mathbf{0}$ (the zero linear transformation) and suppose that we have $\mathbf{x}\in \R^3$ such that $T^2\mathbf{x}\neq \mathbf{0}$.

Show that the vectors $\mathbf{x}, T\mathbf{x}, T^2\mathbf{x}$ form a basis for $\R^3$.

(The Ohio State University Linear Algebra Exam Problem)

Suppose that $\begin{bmatrix}
1 \\
1
\end{bmatrix}$ is an eigenvector of a matrix $A$ corresponding to the eigenvalue $3$ and that $\begin{bmatrix}
2 \\
1
\end{bmatrix}$ is an eigenvector of $A$ corresponding to the eigenvalue $-2$.
Compute $A^2\begin{bmatrix}
4 \\
3
\end{bmatrix}$.

Suppose the following information is known about a $3\times 3$ matrix $A$.
\[A\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix}=6\begin{bmatrix}
1 \\
2 \\
1
\end{bmatrix},
\quad
A\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}=3\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}, \quad
A\begin{bmatrix}
2 \\
-1 \\
0
\end{bmatrix}=3\begin{bmatrix}
1 \\
-1 \\
1
\end{bmatrix}.\]

(a) Find the eigenvalues of $A$.

(b) Find the corresponding eigenspaces.

(c) In each of the following questions, you must give a correct reason (based on the theory of eigenvalues and eigenvectors) to get full credit.
Is $A$ a diagonalizable matrix?
Is $A$ an invertible matrix?
Is $A$ an idempotent matrix?