Matrix of Linear Transformation with respect to a Basis Consisting of Eigenvectors

Linear Algebra Problems and Solutions

Problem 314

Let $T$ be the linear transformation from the vector space $\R^2$ to $\R^2$ itself given by
\[T\left( \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} \right)= \begin{bmatrix}
3x_1+x_2 \\
x_1+3x_2
\end{bmatrix}.\]

(a) Verify that the vectors
\[\mathbf{v}_1=\begin{bmatrix}
1 \\
-1
\end{bmatrix} \text{ and } \mathbf{v}_2=\begin{bmatrix}
1 \\
1
\end{bmatrix}\] are eigenvectors of the linear transformation $T$, and conclude that $B=\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of $\R^2$ consisting of eigenvectors.

(b) Find the matrix of $T$ with respect to the basis $B=\{\mathbf{v}_1, \mathbf{v}_2\}$.

 
LoadingAdd to solve later

Sponsored Links


Solution.

(a) $B=\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of $\R^2$ consisting of eigenvectors

We compute that
\begin{align*}
T(\mathbf{v}_1)=T\left( \begin{bmatrix}
1 \\
-1
\end{bmatrix} \right)= \begin{bmatrix}
2 \\
-2
\end{bmatrix}
=2\begin{bmatrix}
1 \\
-1
\end{bmatrix}=2\mathbf{v}_1
\end{align*}
and
\begin{align*}
T(\mathbf{v}_2)=T\left( \begin{bmatrix}
1 \\
1
\end{bmatrix} \right)= \begin{bmatrix}
4 \\
4
\end{bmatrix}
=4\begin{bmatrix}
1 \\
1
\end{bmatrix}=4\mathbf{v}_2.
\end{align*}

Thus, $\mathbf{v}_1$ is an eigenvector corresponding to the eigenvalue $2$ and $\mathbf{v}_2$ is an eigenvector corresponding to the eigenvalue $4$.
Since $\mathbf{v}_1, \mathbf{v}_2$ are eigenvectors corresponding to distinct eigenvalues, they are linearly independent, and thus $B=\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of $\R^2$.

(b) Find the matrix of $T$ with respect to the basis $B$

From the computation in part (a), we have
\begin{align*}
T(\mathbf{v}_1)=2\mathbf{v}_1+0\mathbf{v}_2\\
T(\mathbf{v}_2)=0\mathbf{v}_1+4\mathbf{v}_2.
\end{align*}

Hence the coordinate vectors of $T(\mathbf{v}_1), T(\mathbf{v}_2)$ with respect to the basis $B=\{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis of $\R^2$ are
\[[T(\mathbf{v}_1)]_B=\begin{bmatrix}
2 \\
0
\end{bmatrix}, [T(\mathbf{v}_2)]_B=\begin{bmatrix}
0 \\
4
\end{bmatrix}.\]

Thus the matrix $A$ of the linear transformation $T$ with respect to the basis $B$ is
\begin{align*}
A=[\,[T(\mathbf{v}_1)]_B, [T(\mathbf{v}_2)]_B\,]=\begin{bmatrix}
2 & 0\\
0& 4
\end{bmatrix}.
\end{align*}


LoadingAdd to solve later

Sponsored Links

More from my site

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

More in Linear Algebra
Introduction to Linear Algebra at the Ohio State University quiz problems and solutions
Quiz 6. Determine Vectors in Null Space, Range / Find a Basis of Null Space

(a) Let $A=\begin{bmatrix} 1 & 2 & 1 \\ 3 &6 &4 \end{bmatrix}$ and let \[\mathbf{a}=\begin{bmatrix} -3 \\ 1 \\...

Close