Show that the matrix $A=\begin{bmatrix}
1 & \alpha\\
0& 1
\end{bmatrix}$, where $\alpha$ is an element of a field $F$ of characteristic $p>0$ satisfies $A^p=I$ and the matrix is not diagonalizable over $F$ if $\alpha \neq 0$. Read solution

Prove that the polynomial $x^p-2$ for a prime number $p$ is irreducible over the field $\Q(\zeta_p)$, where $\zeta_p$ is a primitive $p$th root of unity.

A complex number $z$ is called algebraic number (respectively, algebraic integer) if $z$ is a root of a monic polynomial with rational (respectively, integer) coefficients.

Prove that $z \in \C$ is an algebraic number (resp. algebraic integer) if and only if $z$ is an eigenvalue of a matrix with rational (resp. integer) entries.

Then prove that the characteristic polynomial $\det(xI-A)$ of $A$ is the polynomial $p(x)$.
The matrix is called the companion matrix of the polynomial $p(x)$.

Let $V$ be a finite dimensional vector space over a field $K$ and let $\End (V)$ be the vector space of linear transformations from $V$ to $V$.
Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be a basis for $V$.
Show that the map $\phi:\End (V) \to V^{\oplus n}$ defined by $f\mapsto (f(\mathbf{v}_1), \dots, f(\mathbf{v}_n))$ is an isomorphism.
Here $V^{\oplus n}=V\oplus \dots \oplus V$, the direct sum of $n$ copies of $V$. Read solution

Let $E_{ij}$ denote the $n \times n$ matrix whose $(i,j)$-entry is $1$ and zero elsewhere.

(a) Show that $V$ is a subspace of the vector space $M_n$ over $\C$ of all $n\times n$ matrices. (You may assume without a proof that $M_n$ is a vector space.)

(b) Show that matrices
\[E_{11}-E_{22}, \, E_{22}-E_{33}, \, \dots,\, E_{n-1\, n-1}-E_{nn}\]
are a basis for the vector space $V$.