# Linear-algebra-quiz-eye-catch

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- All the Conjugacy Classes of the Dihedral Group $D_8$ of Order 8 Determine all the conjugacy classes of the dihedral group \[D_{8}=\langle r,s \mid r^4=s^2=1, sr=r^{-1}s\rangle\] of order $8$. Hint. You may directly compute the conjugates of each element but we are going to use the following theorem to simplify the […]
- If a Matrix $A$ is Singular, There Exists Nonzero $B$ such that the Product $AB$ is the Zero Matrix Let $A$ be an $n\times n$ singular matrix. Then prove that there exists a nonzero $n\times n$ matrix $B$ such that \[AB=O,\] where $O$ is the $n\times n$ zero matrix. Definition. Recall that an $n \times n$ matrix $A$ is called singular if the […]
- Find a Basis for the Range of a Linear Transformation of Vector Spaces of Matrices Let $V$ denote the vector space of $2 \times 2$ matrices, and $W$ the vector space of $3 \times 2$ matrices. Define the linear transformation $T : V \rightarrow W$ by \[T \left( \begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a+b & 2d \\ 2b - d & -3c \\ 2b - c […]
- Application of Field Extension to Linear Combination Consider the cubic polynomial $f(x)=x^3-x+1$ in $\Q[x]$. Let $\alpha$ be any real root of $f(x)$. Then prove that $\sqrt{2}$ can not be written as a linear combination of $1, \alpha, \alpha^2$ with coefficients in $\Q$. Proof. We first prove that the polynomial […]
- Linear Properties of Matrix Multiplication and the Null Space of a Matrix Let $A$ be an $m \times n$ matrix. Let $\calN(A)$ be the null space of $A$. Suppose that $\mathbf{u} \in \calN(A)$ and $\mathbf{v} \in \calN(A)$. Let $\mathbf{w}=3\mathbf{u}-5\mathbf{v}$. Then find $A\mathbf{w}$. Hint. Recall that the null space of an […]
- The Matrix $[A_1, \dots, A_{n-1}, A\mathbf{b}]$ is Always Singular, Where $A=[A_1,\dots, A_{n-1}]$ and $\mathbf{b}\in \R^{n-1}$. Let $A$ be an $n\times (n-1)$ matrix and let $\mathbf{b}$ be an $(n-1)$-dimensional vector. Then the product $A\mathbf{b}$ is an $n$-dimensional vector. Set the $n\times n$ matrix $B=[A_1, A_2, \dots, A_{n-1}, A\mathbf{b}]$, where $A_i$ is the $i$-th column vector of […]
- Find Values of $a$ so that Augmented Matrix Represents a Consistent System Suppose that the following matrix $A$ is the augmented matrix for a system of linear equations. \[A= \left[\begin{array}{rrr|r} 1 & 2 & 3 & 4 \\ 2 &-1 & -2 & a^2 \\ -1 & -7 & -11 & a \end{array} \right],\] where $a$ is a real number. Determine all the […]
- If the Localization is Noetherian for All Prime Ideals, Is the Ring Noetherian? Let $R$ be a commutative ring with $1$. Suppose that the localization $R_{\mathfrak{p}}$ is a Noetherian ring for every prime ideal $\mathfrak{p}$ of $R$. Is it true that $A$ is also a Noetherian ring? Proof. The answer is no. We give a counterexample. Let […]