Linear-algebra-quiz-eye-catch

LoadingAdd to solve later

Introduction to Linear Algebra at the Ohio State University quiz problems and solutions


LoadingAdd to solve later

More from my site

  • In which $\R^k$, are the Nullspace and Range Subspaces?In which $\R^k$, are the Nullspace and Range Subspaces? Let $A$ be an $m \times n$ matrix. Suppose that the nullspace of $A$ is a plane in $\R^3$ and the range is spanned by a nonzero vector $\mathbf{v}$ in $\R^5$. Determine $m$ and $n$. Also, find the rank and nullity of $A$.   Solution. For an $m \times n$ matrix $A$, the […]
  • If a Sylow Subgroup is Normal in a Normal Subgroup, it is a Normal SubgroupIf a Sylow Subgroup is Normal in a Normal Subgroup, it is a Normal Subgroup Let $G$ be a finite group. Suppose that $p$ is a prime number that divides the order of $G$. Let $N$ be a normal subgroup of $G$ and let $P$ be a $p$-Sylow subgroup of $G$. Show that if $P$ is normal in $N$, then $P$ is a normal subgroup of $G$.   Hint. It follows from […]
  • Prove that $\{ 1 , 1 + x , (1 + x)^2 \}$ is a Basis for the Vector Space of Polynomials of Degree $2$ or LessProve that $\{ 1 , 1 + x , (1 + x)^2 \}$ is a Basis for the Vector Space of Polynomials of Degree $2$ or Less Let $\mathbf{P}_2$ be the vector space of polynomials of degree $2$ or less. (a) Prove that the set $\{ 1 , 1 + x , (1 + x)^2 \}$ is a basis for $\mathbf{P}_2$. (b) Write the polynomial $f(x) = 2 + 3x - x^2$ as a linear combination of the basis $\{ 1 , 1+x , (1+x)^2 […]
  • Given the Data of Eigenvalues, Determine if the Matrix is InvertibleGiven the Data of Eigenvalues, Determine if the Matrix is Invertible In each of the following cases, can we conclude that $A$ is invertible? If so, find an expression for $A^{-1}$ as a linear combination of positive powers of $A$. If $A$ is not invertible, explain why not. (a) The matrix $A$ is a $3 \times 3$ matrix with eigenvalues $\lambda=i , […]
  • Characteristic of an Integral Domain is 0 or a Prime NumberCharacteristic of an Integral Domain is 0 or a Prime Number Let $R$ be a commutative ring with $1$. Show that if $R$ is an integral domain, then the characteristic of $R$ is either $0$ or a prime number $p$.   Definition of the characteristic of a ring. The characteristic of a commutative ring $R$ with $1$ is defined as […]
  • The Matrix Exponential of a Diagonal MatrixThe Matrix Exponential of a Diagonal Matrix For a square matrix $M$, its matrix exponential is defined by \[e^M = \sum_{i=0}^\infty \frac{M^k}{k!}.\] Suppose that $M$ is a diagonal matrix \[ M = \begin{bmatrix} m_{1 1} & 0 & 0 & \cdots & 0 \\ 0 & m_{2 2} & 0 & \cdots & 0 \\ 0 & 0 & m_{3 3} & \cdots & 0 \\ \vdots & \vdots & […]
  • Sum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All ZeroSum of Squares of Hermitian Matrices is Zero, then Hermitian Matrices Are All Zero Let $A_1, A_2, \dots, A_m$ be $n\times n$ Hermitian matrices. Show that if \[A_1^2+A_2^2+\cdots+A_m^2=\calO,\] where $\calO$ is the $n \times n$ zero matrix, then we have $A_i=\calO$ for each $i=1,2, \dots, m$.   Hint. Recall that a complex matrix $A$ is Hermitian if […]
  • Diagonalize a 2 by 2 Matrix if DiagonalizableDiagonalize a 2 by 2 Matrix if Diagonalizable Determine whether the matrix \[A=\begin{bmatrix} 1 & 4\\ 2 & 3 \end{bmatrix}\] is diagonalizable. If so, find a nonsingular matrix $S$ and a diagonal matrix $D$ such that $S^{-1}AS=D$. (The Ohio State University, Linear Algebra Final Exam […]

Leave a Reply

Your email address will not be published. Required fields are marked *