# Tagged: surjective

## Problem 624

Let $R$ and $R’$ be commutative rings and let $f:R\to R’$ be a ring homomorphism.
Let $I$ and $I’$ be ideals of $R$ and $R’$, respectively.

(a) Prove that $f(\sqrt{I}\,) \subset \sqrt{f(I)}$.

(b) Prove that $\sqrt{f^{-1}(I’)}=f^{-1}(\sqrt{I’})$

(c) Suppose that $f$ is surjective and $\ker(f)\subset I$. Then prove that $f(\sqrt{I}\,) =\sqrt{f(I)}$

## Problem 532

Let $R$ and $S$ be rings. Suppose that $f: R \to S$ is a surjective ring homomorphism.

Prove that every image of an ideal of $R$ under $f$ is an ideal of $S$.
Namely, prove that if $I$ is an ideal of $R$, then $J=f(I)$ is an ideal of $S$.

## Problem 413

Suppose that $f:R\to R’$ is a surjective ring homomorphism.
Prove that if $R$ is a Noetherian ring, then so is $R’$.

## Problem 225

Show that a group $G$ is cyclic if and only if there exists a surjective group homomorphism from the additive group $\Z$ of integers to the group $G$.

## Problem 221

Let $p$ be a prime number. Let
$G=\{z\in \C \mid z^{p^n}=1\}$ be the group of $p$-power roots of $1$ in $\C$.

Show that the map $\Psi:G\to G$ mapping $z$ to $z^p$ is a surjective homomorphism.
Also deduce from this that $G$ is isomorphic to a proper quotient of $G$ itself.

## Problem 192

Show that any finite integral domain $R$ is a field.

## Problem 167

Let $G, G’$ be groups. Suppose that we have a surjective group homomorphism $f:G\to G’$.
Show that if $G$ is an abelian group, then so is $G’$.

## Problem 161

Let $f: H \to G$ be a surjective group homomorphism from a group $H$ to a group $G$.
Let $N$ be a normal subgroup of $H$. Show that the image $f(N)$ is normal in $G$.

## Problem 145

Let $G$ be a finite group of order $n$ and let $m$ be an integer that is relatively prime to $n=|G|$. Show that for any $a\in G$, there exists a unique element $b\in G$ such that
$b^m=a.$