# Tagged: trigonometric function

## Problem 684

Let $\mathbb{R}^2$ be the vector space of size-2 column vectors. This vector space has an inner product defined by $\langle \mathbf{v} , \mathbf{w} \rangle = \mathbf{v}^\trans \mathbf{w}$. A linear transformation $T : \R^2 \rightarrow \R^2$ is called an orthogonal transformation if for all $\mathbf{v} , \mathbf{w} \in \R^2$,
$\langle T(\mathbf{v}) , T(\mathbf{w}) \rangle = \langle \mathbf{v} , \mathbf{w} \rangle.$

For a fixed angle $\theta \in [0, 2 \pi )$ , define the matrix
$[T] = \begin{bmatrix} \cos (\theta) & – \sin ( \theta ) \\ \sin ( \theta ) & \cos ( \theta ) \end{bmatrix}$ and the linear transformation $T : \R^2 \rightarrow \R^2$ by
$T( \mathbf{v} ) = [T] \mathbf{v}.$

Prove that $T$ is an orthogonal transformation.

## Problem 661

Let $C(\mathbb{R})$ be the vector space of real-valued functions on $\mathbb{R}$.

Consider the set of functions $W = \{ f(x) = a + b \cos(x) + c \cos(2x) \mid a, b, c \in \mathbb{R} \}$.

Prove that $W$ is a vector subspace of $C(\mathbb{R})$.

## Problem 651

(a) Find a function
$g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 \theta)$ such that $g(0) = g(\pi/2) = g(\pi) = 0$, where $a, b, c$ are constants.

(b) Find real numbers $a, b, c$ such that the function
$g(\theta) = a \cos(\theta) + b \cos(2 \theta) + c \cos(3 \theta)$ satisfies $g(0) = 3$, $g(\pi/2) = 1$, and $g(\pi) = -5$.

## Problem 612

Let $C[-2\pi, 2\pi]$ be the vector space of all real-valued continuous functions defined on the interval $[-2\pi, 2\pi]$.
Consider the subspace $W=\Span\{\sin^2(x), \cos^2(x)\}$ spanned by functions $\sin^2(x)$ and $\cos^2(x)$.

(a) Prove that the set $B=\{\sin^2(x), \cos^2(x)\}$ is a basis for $W$.

(b) Prove that the set $\{\sin^2(x)-\cos^2(x), 1\}$ is a basis for $W$.

## Problem 603

Let $C[-2\pi, 2\pi]$ be the vector space of all continuous functions defined on the interval $[-2\pi, 2\pi]$.
Consider the functions $f(x)=\sin^2(x) \text{ and } g(x)=\cos^2(x)$ in $C[-2\pi, 2\pi]$.

Prove or disprove that the functions $f(x)$ and $g(x)$ are linearly independent.

(The Ohio State University, Linear Algebra Midterm)

Let $C[-\pi, \pi]$ be the vector space of all continuous functions defined on the interval $[-\pi, \pi]$.
Show that the subset $\{\cos(x), \sin(x)\}$ in $C[-\pi, \pi]$ is linearly independent.