# Math-Magic Tree example

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- The Trick of a Mathematical Game. The One’s Digit of the Sum of Two Numbers. Decipher the trick of the following mathematical magic. The Rule of the Game Here is the game. Pick six natural numbers ($1, 2, 3, \dots$) and place them in the yellow discs of the picture below. For example, let's say I have chosen the numbers $7, 5, 3, 2, […]
- The Matrix Exponential of a Diagonal Matrix For a square matrix $M$, its matrix exponential is defined by \[e^M = \sum_{i=0}^\infty \frac{M^k}{k!}.\] Suppose that $M$ is a diagonal matrix \[ M = \begin{bmatrix} m_{1 1} & 0 & 0 & \cdots & 0 \\ 0 & m_{2 2} & 0 & \cdots & 0 \\ 0 & 0 & m_{3 3} & \cdots & 0 \\ \vdots & \vdots & […]
- Dot Product, Lengths, and Distances of Complex Vectors For this problem, use the complex vectors \[ \mathbf{w}_1 = \begin{bmatrix} 1 + i \\ 1 - i \\ 0 \end{bmatrix} , \, \mathbf{w}_2 = \begin{bmatrix} -i \\ 0 \\ 2 - i \end{bmatrix} , \, \mathbf{w}_3 = \begin{bmatrix} 2+i \\ 1 - 3i \\ 2i \end{bmatrix} . \] Suppose $\mathbf{w}_4$ is […]
- Find an Orthonormal Basis of the Range of a Linear Transformation Let $T:\R^2 \to \R^3$ be a linear transformation given by \[T\left(\, \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \,\right) = \begin{bmatrix} x_1-x_2 \\ x_2 \\ x_1+ x_2 \end{bmatrix}.\] Find an orthonormal basis of the range of $T$. (The Ohio […]
- Infinite Cyclic Groups Do Not Have Composition Series Let $G$ be an infinite cyclic group. Then show that $G$ does not have a composition series. Proof. Let $G=\langle a \rangle$ and suppose that $G$ has a composition series \[G=G_0\rhd G_1 \rhd \cdots G_{m-1} \rhd G_m=\{e\},\] where $e$ is the identity element of […]
- The Polynomial Rings $\Z[x]$ and $\Q[x]$ are Not Isomorphic Prove that the rings $\Z[x]$ and $\Q[x]$ are not isomoprhic. Proof. We give three proofs. The first two proofs use only the properties of ring homomorphism. The third proof resort to the units of rings. If you are familiar with units of $\Z[x]$, then the […]
- Prove $\mathbf{x}^{\trans}A\mathbf{x} \geq 0$ and determine those $\mathbf{x}$ such that $\mathbf{x}^{\trans}A\mathbf{x}=0$ For each of the following matrix $A$, prove that $\mathbf{x}^{\trans}A\mathbf{x} \geq 0$ for all vectors $\mathbf{x}$ in $\R^2$. Also, determine those vectors $\mathbf{x}\in \R^2$ such that $\mathbf{x}^{\trans}A\mathbf{x}=0$. (a) $A=\begin{bmatrix} 4 & 2\\ 2& […]
- Union of Subspaces is a Subspace if and only if One is Included in Another Let $W_1, W_2$ be subspaces of a vector space $V$. Then prove that $W_1 \cup W_2$ is a subspace of $V$ if and only if $W_1 \subset W_2$ or $W_2 \subset W_1$. Proof. If $W_1 \cup W_2$ is a subspace, then $W_1 \subset W_2$ or $W_2 \subset […]