# one-line proof of the infinitude of primes

by Yu · Published · Updated

Add to solve later

Add to solve later

Add to solve later

### More from my site

- A One-Line Proof that there are Infinitely Many Prime Numbers Prove that there are infinitely many prime numbers in ONE-LINE. Background There are several proofs of the fact that there are infinitely many prime numbers. Proofs by Euclid and Euler are very popular. In this post, I would like to introduce an elegant one-line […]
- Fundamental Theorem of Finitely Generated Abelian Groups and its application In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem. Problem. Let $G$ be a finite abelian group of order $n$. If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]
- Determine the Number of Elements of Order 3 in a Non-Cyclic Group of Order 57 Let $G$ be a group of order $57$. Assume that $G$ is not a cyclic group. Then determine the number of elements in $G$ of order $3$. Proof. Observe the prime factorization $57=3\cdot 19$. Let $n_{19}$ be the number of Sylow $19$-subgroups of $G$. By […]
- Normal Subgroup Whose Order is Relatively Prime to Its Index Let $G$ be a finite group and let $N$ be a normal subgroup of $G$. Suppose that the order $n$ of $N$ is relatively prime to the index $|G:N|=m$. (a) Prove that $N=\{a\in G \mid a^n=e\}$. (b) Prove that $N=\{b^m \mid b\in G\}$. Proof. Note that as $n$ and […]
- If the Localization is Noetherian for All Prime Ideals, Is the Ring Noetherian? Let $R$ be a commutative ring with $1$. Suppose that the localization $R_{\mathfrak{p}}$ is a Noetherian ring for every prime ideal $\mathfrak{p}$ of $R$. Is it true that $A$ is also a Noetherian ring? Proof. The answer is no. We give a counterexample. Let […]
- The Set of Square Elements in the Multiplicative Group $(\Zmod{p})^*$ Suppose that $p$ is a prime number greater than $3$. Consider the multiplicative group $G=(\Zmod{p})^*$ of order $p-1$. (a) Prove that the set of squares $S=\{x^2\mid x\in G\}$ is a subgroup of the multiplicative group $G$. (b) Determine the index $[G : S]$. (c) Assume […]
- The Number of Elements Satisfying $g^5=e$ in a Finite Group is Odd Let $G$ be a finite group. Let $S$ be the set of elements $g$ such that $g^5=e$, where $e$ is the identity element in the group $G$. Prove that the number of elements in $S$ is odd. Proof. Let $g\neq e$ be an element in the group $G$ such that $g^5=e$. As […]
- If Every Proper Ideal of a Commutative Ring is a Prime Ideal, then It is a Field. Let $R$ be a commutative ring with $1$. Prove that if every proper ideal of $R$ is a prime ideal, then $R$ is a field. Proof. As the zero ideal $(0)$ of $R$ is a proper ideal, it is a prime ideal by assumption. Hence $R=R/\{0\}$ is an integral […]