# Harvard-University-exam-eye-catch

by Yu ·

Add to solve later

Add to solve later

Add to solve later

### More from my site

- If Eigenvalues of a Matrix $A$ are Less than $1$, then Determinant of $I-A$ is Positive Let $A$ be an $n \times n$ matrix. Suppose that all the eigenvalues $\lambda$ of $A$ are real and satisfy $\lambda <1$. Then show that the determinant \[ \det(I-A) >0,\] where $I$ is the $n \times n$ identity matrix. We give two solutions. Solution 1. Let […]
- Pullback Group of Two Group Homomorphisms into a Group Let $G_1, G_1$, and $H$ be groups. Let $f_1: G_1 \to H$ and $f_2: G_2 \to H$ be group homomorphisms. Define the subset $M$ of $G_1 \times G_2$ to be \[M=\{(a_1, a_2) \in G_1\times G_2 \mid f_1(a_1)=f_2(a_2)\}.\] Prove that $M$ is a subgroup of $G_1 \times G_2$. […]
- Fundamental Theorem of Finitely Generated Abelian Groups and its application In this post, we study the Fundamental Theorem of Finitely Generated Abelian Groups, and as an application we solve the following problem. Problem. Let $G$ be a finite abelian group of order $n$. If $n$ is the product of distinct prime numbers, then prove that $G$ is isomorphic […]
- Torsion Subgroup of an Abelian Group, Quotient is a Torsion-Free Abelian Group Let $A$ be an abelian group and let $T(A)$ denote the set of elements of $A$ that have finite order. (a) Prove that $T(A)$ is a subgroup of $A$. (The subgroup $T(A)$ is called the torsion subgroup of the abelian group $A$ and elements of $T(A)$ are called torsion […]
- Can We Reduce the Number of Vectors in a Spanning Set? Suppose that a set of vectors $S_1=\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is a spanning set of a subspace $V$ in $\R^3$. Is it possible that $S_2=\{\mathbf{v}_1\}$ is a spanning set for $V$? Solution. Yes, in general, $S_2$ can be a spanning set. As an […]
- Taking the Third Order Taylor Polynomial is a Linear Transformation The space $C^{\infty} (\mathbb{R})$ is the vector space of real functions which are infinitely differentiable. Let $T : C^{\infty} (\mathbb{R}) \rightarrow \mathrm{P}_3$ be the map which takes $f \in C^{\infty}(\mathbb{R})$ to its third order Taylor polynomial, specifically defined […]
- Given All Eigenvalues and Eigenspaces, Compute a Matrix Product Let $C$ be a $4 \times 4$ matrix with all eigenvalues $\lambda=2, -1$ and eigensapces \[E_2=\Span\left \{\quad \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \quad\right \} \text{ and } E_{-1}=\Span\left \{ \quad\begin{bmatrix} 1 \\ 2 \\ 1 \\ 1 […]
- In which $\R^k$, are the Nullspace and Range Subspaces? Let $A$ be an $m \times n$ matrix. Suppose that the nullspace of $A$ is a plane in $\R^3$ and the range is spanned by a nonzero vector $\mathbf{v}$ in $\R^5$. Determine $m$ and $n$. Also, find the rank and nullity of $A$. Solution. For an $m \times n$ matrix $A$, the […]