Recall that a group $G$ is said to be solvable if $G$ has a subnormal series
\[\{e\}=G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_n=G\]
such that the factor groups $G_i/G_{i-1}$ are all abelian groups for $i=1,2,\dots, n$.

Proof.

Since $18=2\cdot 3^2$, the number $n_3$ of Sylow $3$-subgroups is $1$ by the Sylow theorem.
(Sylow’s theorem implies that $n_3 \equiv 1 \pmod{3}$ and $n_3$ divides $2$.)
Hence the unique Sylow $3$-subgroup $P$ is a normal subgroup of $G$.

The order of $P$ is $9$, a square of a prime number, thus $P$ is abelian.
(See A group of order the square of a prime is abelian.)
Also, the order of the quotient group $G/P$ is $2$, thus $G/P$ is an abelian (cyclic) group.

Thus we have a filtration
\[G \triangleright P \triangleright \{e\}\]
whose factors $G/P, P/\{e\}$ are abelian groups, hence $G$ is solvable.

A Group of Order $20$ is Solvable
Prove that a group of order $20$ is solvable.
Hint.
Show that a group of order $20$ has a unique normal $5$-Sylow subgroup by Sylow's theorem.
See the post summary of Sylow’s Theorem to review Sylow's theorem.
Proof.
Let $G$ be a group of order $20$. The […]

Group of Order $pq$ Has a Normal Sylow Subgroup and Solvable
Let $p, q$ be prime numbers such that $p>q$.
If a group $G$ has order $pq$, then show the followings.
(a) The group $G$ has a normal Sylow $p$-subgroup.
(b) The group $G$ is solvable.
Definition/Hint
For (a), apply Sylow's theorem. To review Sylow's theorem, […]

Sylow Subgroups of a Group of Order 33 is Normal Subgroups
Prove that any $p$-Sylow subgroup of a group $G$ of order $33$ is a normal subgroup of $G$.
Hint.
We use Sylow's theorem. Review the basic terminologies and Sylow's theorem.
Recall that if there is only one $p$-Sylow subgroup $P$ of $G$ for a fixed prime $p$, then $P$ […]

A Group of Order $pqr$ Contains a Normal Subgroup of Order Either $p, q$, or $r$
Let $G$ be a group of order $|G|=pqr$, where $p,q,r$ are prime numbers such that $p<q<r$.
Show that $G$ has a normal subgroup of order either $p,q$ or $r$.
Hint.
Show that using Sylow's theorem that $G$ has a normal Sylow subgroup of order either $p,q$, or $r$.
Review […]

Are Groups of Order 100, 200 Simple?
Determine whether a group $G$ of the following order is simple or not.
(a) $|G|=100$.
(b) $|G|=200$.
Hint.
Use Sylow's theorem and determine the number of $5$-Sylow subgroup of the group $G$.
Check out the post Sylow’s Theorem (summary) for a review of Sylow's […]

Non-Abelian Group of Order $pq$ and its Sylow Subgroups
Let $G$ be a non-abelian group of order $pq$, where $p, q$ are prime numbers satisfying $q \equiv 1 \pmod p$.
Prove that a $q$-Sylow subgroup of $G$ is normal and the number of $p$-Sylow subgroups are $q$.
Hint.
Use Sylow's theorem. To review Sylow's theorem, check […]

Every Group of Order 12 Has a Normal Subgroup of Order 3 or 4
Let $G$ be a group of order $12$. Prove that $G$ has a normal subgroup of order $3$ or $4$.
Hint.
Use Sylow's theorem.
(See Sylow’s Theorem (Summary) for a review of Sylow's theorem.)
Recall that if there is a unique Sylow $p$-subgroup in a group $GH$, then it is […]

If a Sylow Subgroup is Normal in a Normal Subgroup, it is a Normal Subgroup
Let $G$ be a finite group. Suppose that $p$ is a prime number that divides the order of $G$.
Let $N$ be a normal subgroup of $G$ and let $P$ be a $p$-Sylow subgroup of $G$.
Show that if $P$ is normal in $N$, then $P$ is a normal subgroup of $G$.
Hint.
It follows from […]

## 1 Response

[…] Group of order 18 is solvable […]